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Deconvolution of a single convolution equation is
usually an ill-posed problem. This has been sufficiently
illustrated in the literature. The shortcomings of linear
and of non-linear deconvolution methods can be found, for
instance, in the very clear review pape{/LIj.C Advances in
the theory of holomorphic functions of several complex
variables led Berenstein, Taylor and Yger to realize that
systems of convolution equations could be deconvolved
exactly, thus avoiding the above ill-posedness. Their
preliminary paperg/izfafﬁgventually led to this project. The
practical interest of this observation is that whenever such
a set of convolution equations represents a set of physically
realizable devices (e.g. transducers, sensors) then one has,
by use of a digitally implemented inverse, essentially an
arbitrary bandwidth device. ,6Let us make these ideas exact by
recaliing the following definifibnswéhd'&e¢onVOIU"iwn scheme.

Let H;,---5U  be a collection of distributions of

compact support in R" ("convolvers"). Their Fourier
transforms ;j(z) are holomorphic functions of n complex
variable in the Paley-Wiener class. We say that Mpseeosn
are strongly coprime if there are constants €>0, C>0 such

that for every 7z ¢ C":

IR




m ~
J‘IIJ Iuj(z)l 2 € exp(-C {log(14]|2z]|) + |imz])),

In that case, one can prove the existence of

"deconvolvers" ASEREEEL That is, distributions of

compact support such that

* * =
MRyt +u kv §.

Once this Vj have been explicitly found, and herein lies the

difficulty we set out to solve, one has the following scheme

to determine an unknown signal ¢

sampling
— B - Vi*
& noise ~
¢ —— ',‘l?* (D V¥ —(D —» ¢
g BV —

A very thorough discussion of the meaning of this
scheme, and its implementation in the 1-d case, can be found
in the final report to a previous ARO supported project [4].

In this project we set ourselves the following tasks:

(i) find explicit and, relatively easy, formulas for

the deconvolvers V;,...,v  in the 1-d and 2-d
situations.

(ii) show that in the above deconvolution scheme the

overall system, in the presence of noise, is
entirely dependent on the sampling rate and noise

characteristics, i.e. no "inherent" bandwidth




limitations. This means to show that the above

block diagram behaves like

¢ —> overage over small detector = ;,

(iii) construct 1-d simulations of the deconvolution
scheme to show its feasibility beyond purely
theoretical considerations.

These three objectives have all been accomplished and
documented as it will be explained now. Furthermore, the
payoff of the powerful techniques developed for these
qguestions has also taken place in two other areas: explicit
solution of algebraic equations and their complexity, and the
local Pompeiu problem, these will be discussed below.

First of all, we have two schemes to find
deconvolvers. An analytic one is presented in Chapter 1
where everything depends on the following identity

illustrated for the 2-d case with three convolvers:

£(2,0)- g7 (2.0)
- - N\ - o\
ulz) = :E: v g;(z.c)---gg(z.c) = b (2)p ou(z)ee e oevo(2) o oulz)

&z 1) 3

“1(()“2(() ua(()

gJ N "J":'(z"“5‘¢1'¢z’ 3. "J(zl’zz).“J(zl'(Z)
1 7, + & 2, '

J({) = Jacobian determinant of ;1.;2 at ¢




Here u can be taken as a mollifier of small support

and the estimate ; of the signal ¢ will then be

= *
¢ vl* wl + ... + v3 w3,

where ¢*j = (uj * ¢ + noise) au = "smoothened" data. The
resolution level wil. just correspond to the sampling rate.
This chapter has appeared in print in [5].

In other words, we can say we ccnstruct analytically
deconvolvers vj , once for all, and then we implement a
numerical integration scheme (choice of wu and sampling).

There is a second method to find numerical
deconvolvers directly, explained by Dr. Taylbr in the recent
West Point ARO Conference on Computational and Applied
Mathematics. In this second method, for a fixed grid
(resolution) we compute the deconvolvers numerically and the
existence of the analytic deconvolvers gquarantees that when
the mesh of the grid decreases and the noise decrease the
corresponding estimates ; converge to ¢ We do not yet
have sufficient numerical data to compare these two methods.

In Chapter 2, we present an evaluation of the effect
of noise on deconvolution, background limited detectors, and
amplifier limited detectors are considered, a criterion is
given to evaluate and design different systems of convolvers.
We prove that deconvolution of strongly coprime systems
behave well with respect to noise. This is crucial for
practicality and for the actual engineering design of such

systems. This chapter constitutes the paper [6] which has




been submitted by invitation and accepted for publication in
the forthcoming IEEE Proceedings in Multidimensional Signal
Processing. It is an expansion of part of the Ph.D. thesis
of E. Vincent Patrick written under the direction of Dr.
Berenstein.

In some applications, we find ourselves with occluded
near regions where data could be collected by sensors but no
deconvolution in the above sense performed. This is the so
called Local Pompeiu problem. Let us say a signal f is
collected by averaging its values over any square of side a,
but that this can be done only inside some disk of radius R.
What is the precise relation between R and a (if there is
any) such that the data collected determines f (this would
allow to decide whether f is what we are looking for or not).
Furthermore, can we reconstruct f from this data?
Surprisingly, the answer to both questions is yes, at least
when R > /a2  for the first problem and R > 3 ¥ a  for the

2
second. This is the content of Chapters 3 and 4,

respectively. It is not necessary to emphasize the
importance of this work in the problem of Automated Target
Recognition. Chapter 3 has been expanded and appeared in
print as [8) and Chapter 4, [9], has been accepted for
publication.

Let us conclude this introduction with the observation
that the formulas from Chapter 1 have had an unexpected
impact in problems about systems of algebraic equations,

their complexity and properties of the solutions of the




algebraic Bezout equation. In this sense, this paper and its
follow ups [10,11]) have been cited in numerous papers on
complexity theory and related algebraic problems. See [12]
for an (already slightly outdated) introducticn to this

subject.
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CHAPTER 1
ANALYTIC BEZOUT IDENTITIES
by

* *
Carlos A. Berenstein aad Alain Yger




1. Introduction

In a number of papers [2,3,4,6,7,12] the problem of finding
explicit solutions hl.“',hm for the Bezout eqguation:
f1h1+-~-+fmhm = 1 has been considered. 1If fl,---,fm are
complex polynomials in n varlables and they have no common zeros

in Cn, the existence of explicit analytic expressions for the

corresponding polynomials hl,"'.hm has a number of applications
to control theory and commutative algebra. The most notable

application being that of Brownawell [11] where the essentially
best possible estimate for the degrees of the hl,“-,hIn was
obtained using such explicit analytic expressions. Up to date no

purely algebraic proof of these bounds has been found.

Similarly, in the deconvolution problem, this time the

1.-'~,fln being the Fourier transforms of a strongly

coprime family yl,"-,ym of distributions of compact support,

functions f¢

one searches for a procedure to compute explicitly distributions
e s 0 L 3 ¢ e 8 -

of compact support vy P such that Ky v1+ +ym Yo 5.

(Here QJ play the role of hj in the eguivalent formulation

9191+---+ﬁ P_ e 1). This questicon arises in problems of robust

mm
filtering, image processing, etc. [10). In [7) we wrote down

formulas for a solution Vit tabp of the deconvolution problem
in terms of interpolation series. The problem we have faced
recently is that, while for the 1-d case these formulas can be
easily implemented, in the higher dimensional case they are far
too cumbersome, some of them seem to be beyond the range of

symbolic languages like MACSYMA on which we had, perhaps too

1.2




optimistically, relied upon to carry through the computations
involved. For that reason we present here a new version of our
original deconvolution formulas which assumes extra conditions on
but has as a payoff a very simple formula

the family ﬂl."'.ﬂm

for the deconvolutors LS EARAT 9 We give herein simple examples

where these extra conditions are satisfied.

The problem of finding an efficient algorithm to compute the
above mentioned solutions to the algebraic Bezout equation being
still open, we also analyze here the particular case in which
those polynomials can be computed in terms of interpolation
formulas. Finding an algorithm with a low complexity for this
problem will have many important applications in the theory of

distributed parameter systems and in robotics.

We have also found that a language barrier prevented our
work (7] to be more easily available to some engineers, and hope

that the present paper will overcome those shortcomings.

The first author would like to express his gratitude to the

Université de Bordeaux I for its hospitality while this work was

carried on. His work on the algebraic aspects of this paper are

inspired on the questions rajsed by the AFOSR-URI project at the

University of Maryland. We will also like to thank our friends

Dale Brownawell and B. Alan Taylor for many helpful remarks.




2.  Analytic case

We will consider only entire functions £ of n complex

variables satisfying inequalities of the form

H(Im 2)
(1) l£(z)] s a(1+]z])™ e ,zech,

Im z = (Im zl.---,Im zn) € R" where H 1is a convex continuous

function in Rn, homogeneous of degree 1 (i.e. H(AX) = AH(x) when
A > 0). We call such a function H a supporting function. By
the Paley-Wiener theorem (18] there is a distribution u of
compact support in R" such that f = ﬁ, the Fourier transform
of #. Furthermore, the supporting function HO of cv supp u
will satisfy Hn s H (Here cv denotes the convex hull).
Conversely, if f = ﬁ we can take H = Bo in (1) and m» is
related to the order of u in a simple manner. Hereafter we will

just write fe £ (= £'(R®)) if f satisfies (1).

For simplicity denote p(z):=log(2+{z|) + |Im 2|. A family

-, f of functions in &’ is said to be sfrongly coprime it

fl"
there is a constant ¢ such that
m
(2) :E: lfj(z)l2 2 e-cp(z) , z €l

J=1

It is well known [14] that (2) is a necessary and sufficient
€ E’-such that

condition for the existence of functions 'hl,---,hm
n

(3) ‘;‘ £f.h 1
Lo "33 ’
=1

In other words, a strongly coprime family is precisely a family for

which the analytic Bezout equation (3) has a solution. If we

1.4




consider (3) in terms of the distributlions ul.'°'.um e Vgt by

such that Lj = fj and vj = hj then we have the identity
(4) By N . vy ™ 5,

e, v ERL solve the deconvolution problem stated in [7].

10
We will say sometimes that the family of distributions Hyotoo oty

is strongly coprime.

It might be useful to explain why is (4) called a deconvolu-
tion problem. If we have an unknown signal (functicn or even
distribution or random process) ¢ then the usual data one

measures would be v, ", ¥, given by
- = | LI ) - =  J
(3) p,:= 4y TP SNLEE N 2

The way to recover ¢ is by deconvolufion (which is still given

here by convolution with distributions of compact support).
(6) P = vl . v1 AR S b L

As we have mentioned in the Introduction our problem is to
find easily computable functions gj and corresponding distribu-

tions vj solving (3) and (4) respectively. We note that under
the stronglyv coprime condition (2), or even under the weaker
assumption that (2) is only satisfied for real values of 2 (zer®),
there are readily available tempered distributions aJ §olving

the deconvolution problem, namely let

. f.(z) n
(7) a,(z) = , z€ R,

b m
Z|tj(z)|2
1

1.5




The problem is that the qj do not have compact support and

furthermore, the aj thenselves are not so readily computable
(except by inverting the Fourier transform). Nevertheless there
are many situations where these aJ are still very useful, among
other reasons because they minimize the noise amplification of the
deconvolution process (6) (see [17] for‘an example of implementa-
tion in 2~d). On the other hand, in many applications it is often
not necessary to obtain an exact solution to (4) but one is
allowed to replace the Dirac & in (4) by a (sufficiently) smooth
function uw with small support, i.e. an approximation to 6. It
is this approximate deconvolution problem that is more readily

solvable, even with very good knowledge on the support of the

distributions vJ. which will turn out to be (reasonably) smooth
functions.

Since the method we use relies on Koppelman type formulas,
like those developed in [1,9], we need the following explicit

relation whose proof is an immediate verification.

Lemma 1. Let 4y be a distribution of compact support in Rn,

1 s ksn and U = ([ _,***, [ ) € Cn. The holomorphic function of
1 n

2n complex variables g,(z,l) defined by

‘J(zl'.oc‘zk' tk+1'nn.,tn) - ”(21'°"'zk—1' zk'ooo‘zn)
(8) 9 (zot):g - —
k g T Yk

ie the Pourier transform (for U fixed) of the distribution

denoted I = I(i4,{,k), which evaluated at ¢ € C:(Rn) has the

value

1.6




% 1€, (u-t,)
(9) <I,p>: = - 4 ] U Pt .c"°,t, _;,u,0,5:-,0) e du].

-i(t 14 4ot L )
e kel kel n'n du(t).

(By abuse of language we have written fy(t)du(t) to denote <u,p>).

We note that for the distribution I we have c¢v supp I

€ cv supp y. Furthermore the collection of functions gyttt e9y,

satisfies

(10) 9, (2.8) (2,8 )+- =2 4g_(2.8) (2 L ) = p(z) - H(K).

Associated to these holomorphic functions we have a (1,0)

differential form g in the variable { given by

n
(11) g = g(z.L.u)i= ) g, (2.0)d0, .
k=1

Given a family of m entire holomorphic functions n n

Zzero set 2 is defined as

(12) 2:= (z € ¢ £.(2z)=or=f _(2) = 0 ).

In our applications we will only consider the case where the set

Z is discrete. We say that 2Z {is almost real if there is

constant A > 0 such that

(13) Z<c (zec€”: |Imz| s A log(2+]z])).

It is well-known that an almost real zero set Z is discrete {8],

(15). For a discrete set Z, r > 0, we can define a counting

function n(Z,r):t#(ZnBr). B, = (zecn:[zlq-) = Puclidean ball of

center 0 and radius r. The distance funcfion is Q(z,Z):=

1.7




r
I
I
I
I
I
I
i
I
I
I
I
I
I
I
I
'
’
y

nin(l.nin(!z-{!:{t?)).
Given a family of n distribut.ons of compact support in

Rn. Hyots ol let us denote by Hl the supporting function of

n
cv U supp My that is
1

Hl(e):= max max{(x‘® : %X € supp "J) ' (9€?n),

(13)
1sj<n

X6 = x191+--°+xn9n.

Definition 1. A family of n distributions yl,---.un of

is well-behaved 1if there exists positive

such that

compact support in R"
A.,B,N,x and a supporting function Ho
of the functions

constants

0 < Bo < Hl' such that the zero set 2

'f1 = ul,---, fn = "n' is almost real,
A
(14) n(Z,r) = 0(r"),

and, denoting

(15) [£(z)]: = [i]f,(z):z]m .
1

the following inequality holds:

H (Im 2)
x (o]
(16) |£(z)]) » B9(=2.2) . .
(1+]z])

Definition 2. A well-behaved family u1,~--,un is very

cl,M, c,>0, such that for

well -behaved 1f there are constants

every U € Z we have

f
(17) |3(¢) ] == 'det[;—z—im]
i i

l SNt 1 P
3

1.8




This condition implies that the common zeros of tl,---,tn

are simple, that we can take x =1 in (16) and that if (,('e€ Z,

{ » ' then |{-¢°| 2 c,‘,(:l+|(|).M for some positive constants

cz.M.

We will say also that functions fl"'°'fn are (very) well-

behaved if the above properties hold.

Given a family fl."‘.fm in z%R"). m > n, with no common

zeros we introduce the following functions and differential forms.

First, let g’ = gJ(z.¢.u,), £, = u,, be the (1,0) differential
CRRBLE Il .

forms in { given by (11), we write gj = :z:gzd(k. Recall the
k=1

coefficients gi are holomorphic in both 2z and {. Let F be

the vector valued holomorphic function PFP: = (fl,---,fm), we

write
|

]r(()|:=[ :§ ltj(c)lz]llz .

3=1

which is a nowhere vanishing Cm function of (. Let

m

(18) e =wlz.l) = )t 0t (2)/ B0
j=1
m

(19) Q= ez ;= ) fnedznre)? .
i=1

Therefore o {s a c¢® function of (z,{), #({,¥) = 1 and, as a

function of z, ¢ is a linear combination of the fj. Q is a

(1,0) differential form in [, its coefficients are c” in (z.,7)
and holomorphic in 2z. PFinally, the n+1 functions AJ. CQ in

(z,{) and holomorphic in 2z are defined by the identities

l.9




(20) glA.o.Ang...AgnAQ [ AjdtlA-o-Ad(n R 1 < j s N

1 LI Y n. LI
{21) g A Ag An+1d( 1 Adtn

It is clear that the Aj are simply n x n determinants whose
entries are obtained from the coefficients of ql,---.gn,Q.

Therefore, as functions of 2z, they are finite linear combina-
tions of products of n among the functions gi, 1<k<m. Note

that these products are just Fourier transforms of convolutions of

n distributions of the form I(uj,t.k). (see (9)).

In order to obtain simple and easily computable deconvolution
formulas we need to assume that a strongly coprime family of
distributions pl,-‘-,ym contains a (very) well-behaved sub-
family pl,---,pm. Furthermore, we need some control on the

relation between the support of all the "j versus the supports of

the first n. Let

(22) H2(9) = max max{x'é : x € supp ”j ' (eeRn).
1< jsn -

One such relation between the supporting functions Ho'Hl’H2 is

given by
(23) H2 < 2H1, and
(24) 2(n-1)H1(9) + HZ(G) + H2(9) < 2n HO(G) if 6 » 0.

The last condition is equivalent to

(25) 3r, > 0 such that r°|9| s 2nH_ (6) - 2(n-1)H,(6)-H,(6).

With all this notation in place we are now ready to state the

first deconvolution formula.




-

Theorem 1 Let p1.~-'.u. be a strongly coprime family of distri-

butions such that Jgest ol is a very well-behaved subfamily.

n
Assume further that (23) and (25) hold. PFor any u ¢ C:(Rn) with

supp u s (x € R" . |x] s r,) one can write
- - (z,L)
n 1
(26) u(z) :E: u(y) S ITA R v(z.0)
ez
L A(z,0)
L N+1-3 -
+) (-1) £5(2) ) —drpr— ule).
=1 LeZ

Formula (26) can be rewritten as

a(z) = :z: h(z)t(2),
j=1

were the hj are given by explicit interpolation formulas and

they are Fourier transforms of a series of distributions which are

computable in terms of the original ul.-o-,p In the particular

nl
case where m = n+1 then formula (26) can be also written as

gi(z.t) ----g?+1(z.()

(27) \.x(z) - Z Ty u(() 7

1 n+1
rez n+l gn(z.8) *-erg " (2,0)

£,02)  ceeef L (2)

Proof of Theorem 1. It follows the lines -of Theorem 3 from our

paper (7]. It uses the Koppelman type generalization of the
Cauchy integral representation formula, specially in the version

due to Berndtsson-Andersson [(1]. One introduces first a

parameter ¢ > 0, a function \ and two (1,0) differential forms

in { as follows:




n
jzlfjmtj(zm
(28) e (z,0) : = —
¢ E2) ] %4e
n
(29) s(z.L) : = Z“J"J"“j
=1
n -
:’Zlfj(()gj(z.()
(30) Q (z,0) : = —— .
€ [£(C)]24e

n
2 2
where as before f = (fl,'°',fn), J£(5)]° = :E:Ifj(<)l . The
=1

procedure from ([9), p.402 and p.409) gives two kernels KC,Pc

(i.e. differential forms in the variable { of type (n,n-1) and
{(n,n) respectively) such that if v is a holomorphic function in

a neighborhood of ER' z € By then

(31) viz) = —— {] VIDIK (2.2) + | v(:)?c(z.z)} :
(2m1) 3By B
R

These two kernels are defined as follows. Let Gl(t) = tn and

Gz(t) = t, we denote for any a € N

a
(32) 6{®) = 6l(z,0) = 4 01‘
dt t=¢5(z.t)
(a) (a) a®
33 G =0 (z,{) := —= G ,
(33) 2 2 at? 2L=«>(z.t)

where © is given by (18) and 9: by (28). With Qc defined by

(30) and Q by (19), we define




(a,) (a,) a a a
y 6 16, %eads) ada,) ada) 2
4) K (z2,0):=
(3 (4 Z allaz! 2(a°«x1)
a_+a,+a,=n-1 |z-¢ |
(a,) (a,)  «a . a
, 6 16, 2(3q,) ' (5a) 2
(35) P (2.0): =:E: 5;1;;;; '
a,+a,=n

where ao.al,az € N. Everywhere the va}iable 2z is considered as a
parameter and the 8 derivative is taken with respect to ¢. Due
to our choice of function Gz, the index a2 can only take the
values 0 and 1. For this reason the expression for P£ becomes

particularly simple

(36) P = ¢(3Q.)

The terms (éoc)“’l and (5Q£)n must be computed, for instance

50 10 = 3 3 .\n J(g)e
(37) (aQ ) = aQ /\"'AaQ (n times) = (21) n'aA ———— dar,
£ € £ n+1(|f((),2*£)n+1
where di = di({) = Lebesgue measure in ch. ({We have eliminated

the variables (z,{) where they were evident, we will use this

convention freely in the rest of the paper.)

It is clear that L and Qe are singular when ¢ = 0
precisely at the points { € Z., The expression (37) shows what is
the strength of this singularity in one of the terms of Pc. The
strategy of the proof is to try to get ve}y singular terms so that
when ¢ — 0 the volume integrals in (31) become sums, while the
boundary integrals tend to zero when we set v = ; and let R — o

over a conveniently chosen sequence. The reason this idea works

is the following lemma ({7), Corollary ¢.1.1):




Lemma 2 Let oo

be the measure which is the sum of Dirac masses

at the points of 2, i.e. for ¢ € C:(Cn) we have j‘vdoo ~ZV(()-
LeZ

Then, the family of measures °, given by

£
(38) do_(L) = dxr (L)
& ('t(()lz*c)n“’l

converges, when ¢ — 0O, to the measure

"n doo
(39) —9° .
B2

where, as always, J denotes the determinant Jacobian of

c..'f

fl' n.

From (37) we see that the first term in (36) is amenable to

Lemma 2. The second term is not singular enough, therefore it

will be transformed using Stokes' formula in the corresponding

integral of (31). Namely, due to type considerations, one obtains

the first part of the following identity
= n-1
a4, (vit)e, (z,0)(3Q,(2.L)) A Q(z,8))

_ 5 3 n-1 = 5 n-1 = 3 3 n-1

= d{ve _(9Q,) A Q) ve, (8Q,) A 8Q + v 39 _A(3Q,) A Q.
The last identity follows from the fact that v is a holomorphic
function in ¢ and the (2n-2) form (5Q6)n-1 is J8-closed.
Using this identity the representation formula (31) becomes

{ = n-1
- v(()(xc + npc(an) A Q)
(2n1) 3B

R

(40) v{z) =

1 = n = = n-1
e [B v(£)(p(3Q,)" - n dp, A (30,)"7" A @),
R

44--!--------I-IlIlllllllllllllll-llll......




where the integration is in the variable { and we have

suppressed the dependency on (z,{) of the kernels.

Lemma 3 The following identity holds

{n+tl)n
= = n-1 2 £
(41) 8o _~(8Q ) = (n-1)!(-1) .
£ (4 . (]f(()|2+€)n+1

n
[Z( 1) (f (2)-£4(2)) /\g] JAN F?jm,

k= 3 k=1

where the wedge products in (41) are to be taken in their natural

order, e.g. /\ ak = g%Arrongh.
k= 1

Proof of Lemma 3 We start by rewriting e,

n n
2 z 2
ij(z)fj(t) +te zfj(t})(fj(z) fJ(()) + lfj(l)l

¢ =1 - J=1
¢ JE(L) |24 [£(z)|?
£.(2)
=1 4+ Z(fj(z)-fj(()) ——2———7— .
j=1 [£(5) | +e
= 2 ~1 =
Denote fJ £,08) and v, vj(() := (| £(L)]%+¢) fj' Then we
have
n
¢€=1+Z(f(z)-t)v z
jgl =
Therefore,

Se, A (EQC)n-I - {z(gj(z) - )5"1] [25'3 A q} n-1




n
- A Rl Kn-1)
- o
PR ACINEE NI CIARS B I o i
J=1 ke 3
since 5:1 A évJ = 0. Using that the 2-forms 5vk A gk commute

and that the product of two of them with the same index vanishes,

we have
n-1 -
[Z 5vagk] = (n-1)! N\ (5vk'~9k)
k= 3
ke 3
(n-1)n
= (111 2 (A INA Fr).
k~ 3 ¥x 3
Hence
. -1 n(n+i) o
5u g A [ ngk/\gk] = (n-1-1) 2 (A gRIAN Bry).
K~ § kr 3 k=1

Now, we have 5vk = (|f|2+€)-15?k - (|f|2+c).2?k 5|f|2. Therefore

we can use that §|f|2A5|f|2 = 0 and obtain

n
n n
n [f /\ =12
AN JZI Bd TP A 11 o 070
Jyp, = - . . .
kel K (£]%+e)R (|1 £]%+e)P

If we now expand 5|f|2 = Zrk ﬁk' we see that only the term
k

£ 0f, remains in the triple product above. Hence

373 o
n
§ PREANA
n 5 =15Tk ;g; . k=lg?k' £ 7Q JTF
4 = L = .
Ql k (ltI2+£)n (lflz*c)n“’I (Iflzﬂ)n'ﬁl k=1 k

This concludes the proof of Lemma 3.

M_



Lemma 3 tells us that 5P‘A(5Qt)n-1AQ is the product of a

measure with a smooth density, independent of ¢, and the function

c(|f(£)|2+c)-n-1. Lemma 2 can how be invoked to see that the

volume integral in (40) reduces to a sum when ¢ — 0. In fact,
let us choose R so that ]f(()|2 - |f(()|2+---+|f(()|2 =« 0 when
|(| = R. This choice is always possible_since Z 1is a discrete

set by assumption. 1In this case none of ¢ KC, Q, have

c L
singularities when ¢ = 0 and { € 8B,. We set ¢ ,K_Q to be
R o’'"0, ‘0

the correspondient quantities. Therefore

viz) = —2— [ v(t)(K, + ne_((3Q)"? A Q)
B

(2n1)"
.
T V(C)[¢(5Q )P - n Gp A(3Q 177 A Q]
(274)D  £40+ B ¢ ¢ ¢
R

Recall that fj(t) =0 if { €Z and 1 s J < n. Using
Lemma 2 and the definition (20) and (21) of the AJ we can

compute explicitly the limit and obtain

(42) viz) = —— [ vk, + ne_((5a)" A @
(2n1) 3B
R
n
A (z.8)9(z.L) ) A, (z,8)
D YRTIE R G LAty NEI N YRITS e Ry
L€ZnB J(L) j=1 {eZrB J(T)
R R

Up to this moment we have only used that Z n aaR = ¢ and
that v 1is holomorphic in a neighborhood of ER' To let R — o
we have to choose a sequence R — ® Jjudiciously. Recall that
u(Z,r) = l(ZnBr) s CrA for some positive constants A,C and all

r21. Let M be the smallest integer 2 C(R+1)A + 1, divide the




shell §R+1\BR into M concentric subshells by choosing the

boundaries to be aB(R+j/M,. 0s J s M. There is at least one

such subshell that is free from points of 2, choose R to be
the mid-radius of this subshell, then d({,Z) = (2M) ' if
|t] = R'. Starting from the sequence R =q = 1,2,°** we

construct a seqguence Rq. q < Rq < g + 1, such that for some

positive constants Al' N1

-N, H_(Im ()
(43) I£(€)] 2 A, q e it J¢| = Ry

This follows from (16) and the choice of Rq.

We are now ready to estimate the terms in the boundary
integral of (42) for R=Rq. We will assume |[z] s C,6 <@ and

consider those gq such that Rq 2 C° + 1.

First, let us observe that the functions g;, 1s Jsm,

1l s k s n, satisfy an estimate of the form

. 3 M1 M1 H2(Im z) + Hz(Im r)
(44) lg, (z.8)] s € (1+]z]) “(1+]L]) " e '
for some constants MI'Cl > 0. If 1 s jJ < n we can replace H2
by Hl' We can now estimate the coefficients of differential from
Q. Dencte |[|Q(z.{)]] the largest absolute value of the co-
efficients of d(k at the point (z,{). We proceed as follows.
First,

-M1 Ho(Im L)
(45) [FC)| = [£(C)] 2 A @ e if Jg) = Ry
Therefore
1.18 |




n 1/2
lQ(z.g)| s TFT%TT[ :E:chtz.z)nz]

=1
M. H (Im 2) M, H.(Im )
c,(1+|z]) te ? (14 ) 'e
s N, H_{im )
A, g e

1
which leads to

N, H,(Im () - H_(Im )

(46)  Jla(z.8)| s cuq e
The constant C, depends in fact on z , but |z| s €, and
N2 = M1 + N1 {In fact C3 can be estimated in terms of e‘Im z|

and polynomials in |z].). Similarly, with possibly different
values for the constants ca,N2 appearing below we have

N,

_ Ho(Im £) - 2 H_(Im L)
(47) J5Q(z.8)ff < ¢, q ‘e

Nz 231(In {) - 2 ao(Im {)

(48) néqo(z.()u s Cyq e
N, -H (Im £)
(49) log(z.8)] s € q e
N, -H (Im )
(50) lo(z.8)| s 1EEH < cyq e °

To estimate Ko we recall that a, can only take the

values O and 1 4in (34). 1In case a2 = 0, we have to estimate

n-al 01

terms of the form ° ¢(5Q°) , with 0sa, s n - 1. There

1
are powers of g that we will disregard, the estimate is then the

following functions of 1Im (




n-a a -(n+a +1)H +2¢ H
"’o 1’(500) 1" < e 1 o 11
Since H1 2 Bo . the worst case estimate occurs when a, =n - 1.
Hence the terams corresponding to az = 0, a, +a, = n-1, in the

definition of Ko can all be estimated by

N3 -ZRHO(Im ) + 2(n~1)31(1m L)
(51) C, q e ’ . |t] =R

q .

The terms with a, = 1, a, +a, =n - 2 correspond to the
na, _a, _

estimate of |lo (9Q,) AdQll. The worst case occurs this time

when a1 = n - 2 and we obtain an estimate of the form

N, -2nH_(Im {)+2(n-2)H, (In {)+2H,(In ()
(52) C,q e ALt = Ry

In (42) we have one more term to estimate for |{]| = Ry

N
(53) flog(8Q,)" " A all s c5 @ e

The conditions (23) and (25) imply that the largest exponential

factor in (51), (52) and (53) 1s the one in (53) and it satisfiles

(54) -2nH°(Im ) + 2(n-1)H1(Im ) + Hz(Im ) s - rOIIm 'l

since we have assumed that u € C:(Er ) we have
o

-N,-2n rollm.(l

(55) (W) 5 Cl1+]L]) e , T ech,

which allows us to conclude that, if v = u,

(56) 1lim I ﬁ(()[xo(z.z) + noo(Z.t)(éQo(z.())"°1 A Q(z,:)] = 0,
-0

1 0B,
q

1.20
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To conclude the proof of Theorem 1 we need to show that the
series appearing in the representation formula (26) converge
absolutely and uniformly in compact subsets of ¢® to functions
in E'. Since we have assumed that Z is almost real, the
estimates of all the terms A:,.v..‘l-1 are in terms of powers of

[t|. Using that n(Z,r) = o(r®) anda |u(z)| decreases as fast

-N
as |{] 4 for { € Z we have the desired convergence once N‘
is chosen sufficiently large. The support of all the distribu-

tions thus obtained is contained in the convex set K whose

supporting function is (n+1)52. (]

Remarks 1. One can see that the condition 2H1 2 H2 cannot be
relaxed if the other conditions of theorem remain in the same,

otherwise the exponent in (52) would become positive and we would
not be able to prove (56).

2. A way to weaken the conditions in Theorem 1 1is to
impose some better lower bound on |F| than (45) that depends only

on the first n functions. We will do so in Theorem 2 below

3. It is clear that one needs only u € Cz(ir ) for N
o

sufficiently large to obtain (26).

The following example shows how Theorem 1 simplifies
enormously the computation of the deconvolution formula proposed
in (7).

Let yl.y ,4_ be the characteristic functions of the

2°73
squares centered at O, of sides parallel to the axes and of length

2/3 , 2/Z , 2 respectively. One can easily show [7], [17) that




yl.yz is a very well-behaved family with

Ho(Im €) = y2(|Im &, ]| + |Im L,|)

Here H (Im () = H,(ImY) = Y3(|Im ¢, + |Im&,|). In this case the
main hypotheses (24) reduces to verify that «&/2 - 3/3 > 0 !.

Since |x,| + [x,| = /xf+x§ for x € R, we have

r = 4/2 - 3/3 2 0.2. The variety 2 1is this case is given by

o]
z ={[% , ;_.’;] j.k € z'}u{% , :‘7-;_] j.k € z'}.

({There were about forty different types of terms in (7]

compute.).

Before we proceed to state Theorem 2 we need to point out
that the representation formula (31) does not depend on the
particular choice of the differential forms gJ we have chosen,

rather on the fact that (10) is satisfied. That is,
n , .
zgi(z.()(zk-(k) = fj(z) - fj(().
k=

Now, let f = uy and h(z) = sinBz for some B > 0, and denote by

1
g the differential form associated to f by (8) and (11). Let

us define a differential form » by

sin le—sin Btl

(57) r{z,0):= f£(L) iﬁf‘1 dt, + h(z)g(z,t),

= %Y at
writing 7 "kd'k we have

7 (2,80 (2,-K )44y (2,8) (2K ) = £(z)h(2) - £(LIN(L)

therefore we can associate » to the product f:h. It is also

1.22




Clear that as a function of 2z the v, are Fourier transforms of
distribution of compact support easily computable terms of 4 and
B. Obviously we can replace sinle by sinBzJ without any
problems, hence, given a family fl.--',tm we can construct an

augmented family f c,f ., t1~sinle.°".

[ ) =
1’ m’ “m+l

[ . LI I .= . J
fzm.-fm sin le, 'f(n+1)m’ fm sin an.. .'rhe corresponding g

for j 2 m+l1 are computed following the procedure (57). It is

clear that if fl,-”,fm was strongly coprime, the augmented

family remains strongly coprime. If fl"..'fn form a very
well-behaved family we will keep the notation Ho'“l'gz to

indicate the support functions corresponding to the m original

members of the augmented family t1'°°°'f(n+1)m

be a strongly coprime family such that

Theorem 2 Let £, ,*°°,f

1!
the subfamily tl.---,fn is very well-behaved. There are

constants Bo 2 0, r, > 0 such that for any B 2 Bo' and any

u € C:(ﬁr ) the representation formula (26) is valid for the

1>

augmented family fl""'fm""'f(n+1)m defined above if either of

the following two conditions holds:

(58) Hz 1 2H1 and 2(n-1)H1 < (2n—1)8°

(59) 231 < H2 and 2(n-2)H1 + H2 < (2n—1)H°.
Proof The proof is exactly the same as that of Theorem 1 except

for improvements on the estimates (46),(47) and (50) for the new

Q and e¢. Recall that it is there where all the functions

f appear. Let FJ:'(tl"'°'f(n+1)n) and keep the

1'."'t(n+1)n

1.23




notation P = (fi.---.t.) as before. We have

(60) 1E,(8), = lF(‘S)'(l#lsint,[zwo s)sines 15 % = 1Kzl V@)
It is clear that for some positive constants cn,c; we have

2 2,1/2
(1+|s1n5<1|-w--+ls§n§tnll

%(L)

v

2B|Im | 2B|Im T | 1/2
CA e PR X

2B|Im L, 2B|Im |
n n

where |Im L},

"
[ '
urqu
[
-4
a8
Fa i
.
-
B
Fa
n
l cunammn Y
—
B
Fa
o,
N
| U
[y
~
N

We estimate first gj, J 2 m+1, for ]z-[] 2 1 since that is the
only case that appears in the proof of (56). As it follows from

(57) we have, for some 1,k (1sisn, 1sksm), the estimate

BlIm z_|

led(z.0)| s ce  (ENCIIE LY N R 15  (z.c)11)

N N, B|Im z,]| K. (Im z) H,(Im §)
s c(a+]z]) Ta+]g]y te i []f(()lo(() +e? e ? }

It follows that

(n+l1)m 1/2
Itz o)l = Tr;%rrr { 2 ng(z,C)Hz}
i=1

N, K, BlIm z|+H (Im z)
s C (1+]z]) T(1+]g]) e

H,(Im t)
. e . AFR)fo(z)
[F (X ] [F (80 ] )
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Therefore, for a positive constant c2 depending on 2, we obtain

B
N H(Im Z)-H (ImT) -=lim 2!
(62) etz )l s c,(2+]T ) 1[1 + e ° ° f 5 1].

51l11‘rY0
IF (2)| N, B (Im %) ~2|im |
(62) [e(z.8)] s s c,(a+]t]) e ® n 1
TF,CIT ¢ ©2 |
Pinally,

Jot i)l o%(z.0))

fl6a(z.¢iff <« ¢ max 3
1sj, k¢ (n+1)m IPI(()I

Now, for j 2 m+1 we have for some 1 s i1 s n, 1 s & s m

uafj(:)ll = ||sinBL -3f,(L) + f,({)B-cos B{ 4t ||

N H,(Im ()

s c (1+[c]) 2ot e + |R@)}2(0)).

It follows that

N
2 H,(Iml) 2H (Im T)
15Q(z,8)] s czililill-5{|ﬁ<c)lzo(c)2+2|F<<)|a(<)2e 2 +0(g)e 2
[F (L))
B
N H,(Im¢)-H (Im{) 2H (Im{)-2H (Im{)-2|Im{
s C,(1+{t]) 2[1+2e 2 ° se ? © alImtl)
Choose Bo 2 0 such that
B
(63) 2H,(Im {) = 2H (Im &) - =2 |Im L |, s O.

N
When B z B we will have {Q(z.L)f = C,(14[¢]) ! ana

) N H (Im )-H_(In )
(64) leQez.)ll s c (1+lL]) e .

where 02 still denotes a constant depending on 2z of the form

1.25 ’ .




N uz(x- z)+B|In z|1

1

C, = const.(1+]z]) " e .

We can now return to the proof of Theorem 1 at the point
where we obtained the estimates (51),(52),(53). Ignoring powers

©of q the exponential factors are:

(51') exp(-2nH_(In {) + 2(n-1)E, (Im $)-2|In | )
(52') exp(-(Zn-l)ﬂo(Im ) «+ 2(n—2)H1(Im §)+H2(Im {))
(53") exp(-(Zn-l)Ho(Im L) + 2(n—2)H1(Im )).

Under the hypothesis (58) the largest of these three is (53')

and 1fs exponent satisfies

(53”) —(2n-1)H°(Im ) + 2(n-1)81(1m L) s - rollm t.

for some T > 0. 1If the hypothesis (59) holds, then the largest

exponent is (52') and we define r, > 0 by

(52%) -(2n-1)R°(Im ) + 2(n-2)H1(In ) + H2(Im.() s - rOIIm (l.

In either case the rest of the proof is the same as that of

Theorem 1.

Example As shown in (7] the family Hy/¥My.H, obtained by taking

“1 = characteristic function of the unit ?quare = I[-l.l]x[-l.ll'uz

. bY 36°, and Hy ® rotation of #, by 45°,

satisfies the first conditions of Theorem 1 and Theorem 2 with

& rotation of u

H, (6) = |6| since the squares contain the unit disk. One can
easily convince oneself that the hypothesis (24) does not hold

(e.g. take 6 = (t,0), t > 0.) On the other hand one can take

“




31(9) - 32(9) - /2|0 since all the squares are contained in the
disk of radius ¢2 . We are in the situation of hypothesis (58)

and §ts verification reduces to the fact that

r, = 3-2/2 > 0

Purthermore B_ = 4(Y2-1) works in this case.




3. Polynomial case

The conditions on Theorem 1 and 2 imply that the convex set
defined by Ho contains a ball. 1If we want to prove an algebraic
version of (26), the fact that this condition is not satisfied
plays a role. Such a representation was stated in [3,4]) without

proof. We analyze here the conditions under which it 1s valid.

Theorem 3. Let pl,“-,pm be a family of polynomials in ch

without common zeros, suppose further that:

a) D: = max deg pJ = deg Py for 1 s i s n,
s jsm

b) Z=(zec€':p(z) =0; 15 isn) is discrete.
c) J(z): = Jacoblian determinant of Py """ Py at z is = 0
for all =z € 2
da) Pyr* P have no zeros at infinity, i.e. #Z = p".
Then
(65) 1= ) —%—:—?—Clo(z t) + Z( ™ e 2 ) —J((:—,f—)
Lez LeZ
where v,Aj are defined as in (18) - (21) with respect to the

polynomials pl,---,pm.

Rerarks 1. The functions gi defined by (8) are obviously

polynomials of degree D-1. It follows that (66) has the. form

(66) p (2)A (2)+° " +p (2)A (2) =1
1 b} n B

for some polynomials Aj € C(zl,°-',z of degree at most n(D-1).

n!
This follows from the fact they are given as n x n determinants

involving the gi .
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2. As before, the case a = n ¢+ 1 leads to a particularly

pPleasing form of (66)

1 n+l
?1(2.() o 91. (z.0)

1 1
(67) 1 = Z—— 1 ... LD+l .
J) Ppy (X)) |@,(2.X) g, (z.%)
Py(z) -~ Pn+q (%)
3. The two statements in condition (d) above are really a

form of Bezout's theorem [19). The meaning of the expression

"p1.°'°,pn have no common zeros at infinity" is that if we
D Z zn
introduce homogeneous polynomials HJ(zo,"-,;n): = zopJ E;""'E;

then the subset of C™*! defined by (z,=0, H =-:-=H =0) is

{O). This is equivalent to the statement:

n
(68) |ptz)] = [lej(z)lz]”2 2 c|z|® 1f |z| = R1.
=1

If we call p? the leading homogeneous polynomial of Py

then the statement (68) is also equivalent to:
(69) (z € ¢": pl(z) =+--=p_(z) = 0} = (0}.

We also note that (69) implies (b) above. That is, condition (d)

above implies condition (b).

Proof of Theorem 3. The proof of the same as that of Theorem 1.

This time we take wv=1 and R arbitrary 2 Ro (cf.(68)). One can
estimate [|Q(z.L)] s ¢c/|t]. Jl8Q(z.L)| s C/|(|2. leg(z.8)] s C/I(ID,

|I5Q°(z.()|| s C/|(|2 if |t| = R and |z| s K s R-1, with

1.29




C = C(k) > 0.° These estimates imply that the boundary integral in

(40) tends to zero when R — @, o)

1t Py+*" Py are such that their leading terms pg satisty
(69) but their degrees deg pJ = DJ are not all equal or
nax(DJ:l s 3 s n}) 1s smaller than Dcmgx (DJ:ISJsm), then we can
still prove a version of Theorem 3. Thaf corresponds to the
analytic counterpart of Theorem 1, that .s to Theorem 2. For the

moment we continue to assume that J(z) » 0 Vz € Z = (p1-°'°=pn=0).

Let Ll(z) = 2z, 400040 2 be a linear homogeneous

polynomial with generic coefficients. The condition that

{z € ch. L1=pg=-"p: = 0) » {0O) 4is an algebraic condition on the

coefficients of Ll' Therefore we can choose L1 such that for
d

any integer d1 z 0 we have (p‘;Ll1

o o _ -
= Py*= =P © 0) {0).
Continuing in this fashion we can choose LI""'Ln' dl,---,dn
such that for any choice of constants cl,~--,cn. 1f we define

P ' 3° —~° = = e =
pj = pJ(Lj+cj), then Py= =Pn 0) {0) and deg pJ D for

1 s jJsn. 1t is clear now that for most choices of cj we still

have that all common zeros of Bg."°.iz are simple and
~0 ~0
Py 'PpePrsy’ Py have no common zeros. Theorem 3 can now be

applied to this new family, one obtains polynozxials Aj
=

(70) Z Ajpj = 1, deg Aj s n(D-1)
=1

and such that they have a representation of the type (65).




We remark that a representation such as (65) cannot be valid
if the Py Py have common zeros at infinity. For instarce,

in the exanmple of Masser-Philippon [11):

D Docc = _D - D-l
P; zl,pz =z z2' 'Pp-y ’n—z zn-l‘pn =1 zn—lzn

1

one knows that & = D"-D" * is the best estimate possible for

the degrees of AJ solving the polynomial Bezout eguation. The

D _p? p? p3
olynomial A, = 26 A = - zbkﬂl A= - 25 22 -23 .
P ynomials 1 n’ 2 n z —zD ’ 3 n - _zD . [)
1 72 2 %3
n-2 n-1 n-1
D D D &
z -z 1-2z z
An-lg - zi[;n-z < 14] . A= n-1 3_1 ., have exactly this
Zn-2"%n-1 1=z _1%n

degree. On the other hand if we had a representation like (65) we
could conclude that there are solutions Aj of the polynomial

Bezout eguation with deg Aj < n(D-1) 1like in (70).

We would like now to show that the condition (c) of the
simplicity of the zeros in Theorem 3 is not necessary. Regret-

fully, we only know how to do this in the case where m = n + 1.

Theorem 4. Let Pyr°*vPpryy be a family of polynomials in Cn

without any common zeros, D = deg p,=-+=deg p, 2 deg p_,, and

(p?="°=p§ = 0} = (0). Then we can find polynomials Aj of
‘n+1l .
degree s n(D-1) satisfying the identity :E: AjpJ = 1. The
1
coefficlients of the AJ can be written in terms of the values of
pn+1 and values of derivatives of pn+1. and the coefficlients of
the g:*l(z,() (when considered as polynomials in 2z), all of \




these evaluated at the points of 7 = ((:pz({)'°'°'9n({) = 0).

Proof PFor 0 <« ‘J << 3 the function 1/pnﬂ is holomorphic in a
neighborhood of 0 = {|p,| s ¢4, . [p | s ¢ ). This set is a
compact polynomially convex set. (The compacity follows from the
condition (68)). By Sard's theoren one.;an choose the cj 80
that the sets (|pJ|=cj) are real analytic submanifolds of C",
(In fact, we only need it in a neigborhood of 0.) For any

v € X() we have that integral

d(1
P, (L1 P (%)

Ao-oAdcn

1
(71)  Res, (vdt Acadl,):= P ] viZ)
[Py l=0,

Ipgl=0p,

is independent of choice of o© “cc.,0, 8s long as o < oj S Cj

1’
and the (|pj| = aJ) are smooth. Furthermore, if v is in the
ideal generated by Pyt Pp in X() then this residue is
zero. Therefore, it depends only the values of v at z and a
certain number of derivatives of v at Z (as i1t follows from
the Nullstellensatz as presented e.g. in (13}, (16])). In other

words, the integral (71) can be considered as an operator defined

by a certain linear combination of the Dirac masses 6( and their
a'at
ar? ) .
v. This operator is very hard to compute explicitly except in

derivatives

6(’ { € Z, applied to the holomorphic function

very simple cases but it is perfectly defined as the common value
of all the integrals (71). It is called the residue current of

Z,
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Let us consider now the polynomial B(z) defined by:

?:(z.t) oo 9?t1(z.()

1
B(z) = Resz W g;(z'() .o O:*l(z'(’ d(lA Ad(n .
pl(z) te Pn+1(z)

(72)

‘n+l

This polynomial is in fact of the form :E:Aj(z)pj(z), with A
J=1

polynomials of degree < n(D-1) whose coefficients are computed

J

in terms of the values of derivatives of p and the

n+1
coefficients of gg (as polynomials in 2) evaluated over 2Z.

The only problem is to show B(z) = 1. We fix values 0,,60<0,<¢

J Iy

Consider complex numbers a;.cct.ap sufficiently small and so

chosen that:

i) All the common zeros of pl-al"°"pn-an are simple and

1, ... 1
lie in (|py] < 504, . lp | < 30.).

n

ii) Py=Gy.° " Pp=G.. P, have no common zeros.

Note that p1+a1,°",pn+an still do not have any common

zeros at o, Let us denote Za = {z € Cn: p,~a,=***=p —-a_ = 0},

1 b | nn
Then
dfl A+ AdY
1 1 n
(73) Res, (vd{ A-+-Adl ) = —— v(Tl) —
Za 1 n (2"1)n I _ (pl(ﬁ)—dl) (Pn(()-ﬂn)
|p1|—o1 .
Ipgl=o
dp,a_,***,p.-2a ) 8(p.,***,p)
1 1 n n 1
¢ = =
where J() a(tl""‘zn) a“x"""n’ and the last

identity follows from Stokes' theorem. (Replace the contour by
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little spheres about the distinct points of {a). This last

identity is the effective computation of the residue current of

Za. nanely

- -1
Res, PINEILIN
a

The first identity in (73) shows that Resz - Resz as 0 — 0,
a

i.e. the residue currents at a = 0 are continuous when acting on
holomorphic (n,0) forms. On the other hand, by Theorem 3 we have

1 n+l
91(2'() gy (z.%)

1 ] .

(72) Res —_— 1 n+l
Z, Ppeyft) gn(z.%) **° 9p (z.%)

ay Asecnd; = 1.
1 n

Py(Z)=ay et Ppyy(2)

(Note that the gj corresponding to pj and to pJ - aJ
coincide). By continuity we obtain B = 1. This concludes the

proof of Theorenm 4. o

Remarks 1. The can obviously obtain the same result without

assuming the degrees of Py:**" P coincide or that they are

n
larger or equal than that of Prsy:

2. The reasoning of Theorem 4 extends to a strongly
coprime family of n+l elements whose first n members from a

well-behaved family. Under the other conditions of Theorem 1 or

Theorem 2, we obtain a series representation of the solutions of

the Bezout equation which we computed in terms of the residue
current associated to Z. This time the series converges after

grouping of terms.




i
3. The interest of the theorems in this section lies in

the search for explicit algorithms to obtain soclutions AJ
B

for the algebrajc Bezout equation :E:AjpJ = 1 which satisfy
1

Brownawell's estimate, deg AJ s 3 unD”. 4 = min(n,m).

4. Conclusion

We have shown how explicit solutions to the analytic and
algebraic Bezout eguations can be obtained under natural
restrictions on the original functions f1,°--,fm. This work has
applications to the implementation of deconvolution for

multidetector systems.
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1. INTRODUCTION

Throughout the last several years mathematical results have been present-
ed which form the foundations for the use of multiple (parallel) linear opera-
tors, each given by convolution with a distinct kernel (or impulse response),
in place of the use of a single such linear operator or, equivalently, in
place of the use of multiple (parallel) operators each with the identical

kernel [1] - [13]. See Fig. 1. The mathematical results cited above describe

the conditions under which compactly supported distributions “1' “2""' Ho
have associated to them compactly supported distributions vl. Voo Vo
such that

m .
:E:“i.vi = g, (N
i=1

where & is the Dirac distribution on R" and where e denotes convolution.
We often refer to the Hy as convolvers and to the v, as deconvolvers.

To introduce some explicit multiple operators and their role in deconvo-
lution, let us look at an example and the results of a Computer simulation
[14]. Our example is for a case in which equation (1) holds for m = 2, and
it is outlined in Fig. 2.

In the center of Fig. 2 the block diagram of Fig. 1(a) is reproduced for
the case m = 2. (The operator ¢ in Fig. 1(a) will be discussed later.) We
shall be considering in this example the one-dimensional case, that is, func-
tions of one variable. To the left of the block diagram is the graph of the
input signal, that is, the function f, which here consists of the sum of
translated Gaussian pulses. (This function is one that is frequently used for
the evaluation of deconvolution algorithms; see for example [15].)

The input signal f 1is acted on by two convolution operators, one with

kernel Hy and one with kernel M, The resulting output functions are g,
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and 8 respectively: .

g‘(x) = (foul)(x) = J f(y)u’(x-y)dy. i =1,2, xe€R.
R

In this example, the kernels My and H, are essentially the simplest pos-
sible kernels with compact support: the kernel functions are each constant
over some bounded intervals and zero elsewhere. (The support of the kernel
function refers to (the closure of) the set on which the function is non-zero;
the support is called compact if this set is bounded.) The kernel functions
are shown in Fig. 2: Hy is supported by the interval [-1,1], and u2 by
the interval [-v2,v2].

The output functions g, and g, are also shown in Fig. 2. We often
refer to these as the data functions, for in applications g, and g, are
typically the results from two distinct measurement operations which are
modeled by the "convolvers" Hy and Hy An application that is a physical
realization of the situation presented in Fig. 2 is spectroscopy. In that
case, the function f 1is an unknown density function with the wavelength of
the optical radiation aé the variable: f(x) is the energy per unit wave-
length at wavelength x. To make a measurement of nonzero energy from this

density function it is necessary to integrate f over some range of wave-

X+A

lengths, for exarxple, gl(x) = J f(y)dy. We could also make the second
x-~A
x+V2A
measurement gz(x) = f(y)dy. A linear scaling of the wavelength vari-
x-v24

ables converts these integrals into exactly the example in Fig. 2. In this
interpretation, the peaks in the unknown spectrum f have a separation
smaller than the lengths of wavelength intervals over which we integrate.

Consequently, the data functions 81 and 32 retain no obvious indication of

two peaks.




Of course, the classical deconvolution problea is to recover the unknown
input function { from only one data function, say & * “O'f' The term
multiple operator deconvolution is used to emphasize that in recovering f we
may use more than one data function. In fact, part of the problem is deciding
how many are sufficient. More precisely, the issue is how many of which con-
volvers H, are sufficient for the recovery of f. As we shall see later,
the two we have chosen for our example in Fig. 2 are in fact sufficient. They
are in fact sufficient in a very strong manner. Not only is f uniquely
determined by g1 and g2. but in fact there exist linear operators given by
convolution with distributions v1 and vz, both with support no greater

than the larger of the supports of “1 and "2' such that
f=vicg vy,

We will give the explicit formulas for vy and v, later. Here, to finish
our example and discussion of Fig. 2, we have shown to the right in Fig. 2 the
result of recovering f from g, and g, for a digital simulation [14):
discrete versions of "deconvolvers" v; and v, were constructed and, using
discrete samples from the data functions gl and g2, a discrete approxima-
tion of f was constructed by the sum of discrete convolutions. A quite good
reconstruction was obtained. (We attribute the asymmetrical ringing in the
result to a combination of truncation error and the use of a loop in the simu-
lation that recalculated a quantity that should have been calculated only
once. )

We would like to emphasize one final point: the example is based on
mathematical results regarding relationships between convolution operators and

smooth functions on Rn. Whenever we mention the use of discretization, it is

always in the sense of a discrete approximation to a smooth function. When we




refer to discrete data, we mean samples of the underlying data functions. The
reconstruction of the unknown input depends directly upon how well the dis-
crete data can be used to approximate the data functions for a given choice of
interpolating functions. In Fig. 2 it should be clear that if gy and g,
were sampled at a rate of one sample per unit interval (2% tick marks), one
could hardly expect an accurate estimate of f. The sampling rate for the
results on Fig. 2 was 50 samples per unit interval (20 samples per tick mark
interval).

Thus we always view the theory, the applications, and the algorithms in
the following order. First the problems and results are stated in terms of
continuous domains that model the applications. The accuracy of the algorith-
mic implementation of the results then is understood to depend on the sampling
rate, with convergence as sampling rates increase. The specification of a
possible minimum sampling rate for a given reconstruction problem is typically
a problem-specific task in interpolation error estimates. 1In fact, the
Nyquist sampling rate is sufficient for band limited functions f.

The example in Fig. 2 illustrates why eéuation (1) is of interest for .
applications in which the convolver My must correspond to a physical, analog
device wherein the impulse response is dictated by a solid state or biological
process. It is frequently possible to select such analog convolvers which
satisfy approximately the multiple operator criteria such that equation (1)
will hold. Then each associated deconvolver can be digitally implemented.

The fact that the deconvolvers act linearly and have compact support means
that their implementation is straightforward; their action as continuous
linear operators implies stability. Most importantly, the evident high band-
width of the overall operator is accomplished without any essential change in

the response functions of the analog devices. The term overall operator




1

]
refers .o the operator given by the kernel distribution ¥ Hov, = 8. Of
i=1

co.: se, because of practical constraints such as analog and digital approxima-
tions and computation time, the design objective for the overall operator
would not be the identity operator with impulse response & but rather a high
bandwidth approximation of the identity operator given by an impulse response
¢. In terms of the distributions in equation (1), since convolutions commute,

m
Z(“i'w'vi = Z"i'(ui'w = ¢. (2)
i=1 i=1

In a sense ¢ can be considered to be made up of "parts," each of which
arises from one of the practical constraints just listed, along with a special
part that is deliberately added to control the noise power spectrum of the
output of the overall operator.

The publications on this subject have appeared primarily in the mathema-
cal literature. The following issues regarding (1) have been addressed:
sufficient conditions for the existence of solutions [1]‘- (4], [16}; examples
of sets of distributions that satisfy the sufficient conditions [5]) - (7];
construction of explicit solutions, that is, explicit formulas for the decon-
volvers [7] - [9]; and construction and evaluation of approximate solutions
(s}, (11], [(14]).

Only recently have specific applications of (1) been mentioned. The work
of Berenstein, Krishnaprasad, and Taylor [14] was one of the first times that
(1) and contemporary mathematical methods for understanding the equation were
applied to physical problems. This work also discussed the question of
additive noise and the question of the continuity of the overall operator with
respect to the distributions “1' Horoovw Hp- The nolse question is in regard

to noise added following the action of the operators defined by the Mo
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wvhile the continuity question is in regard to the dependence of the overall
performance on either the actual analog approximations of the My, or the
digital approximations of the V-

The approximation methods of [11] were motivated by this work of
Berenstein et al. These methods exploit the approximation in (2). In con-
Junction with the analysis, a computer simulation for R’ was performed.

This simulation dramatically {llustrated (2) for imaging devices in which the

analog convolvers were solid state photodetectors. With these results there

was an increased interest in imaging applications. This led to the considera-

tion of not just detectors but of linear systems consisting of sequences of
operators with each operator of the multiple operator type. These activities
led to the need to answer basic systems analysis questions.

In what follows three topics in multiple operator deconvolution are dis-
cussed. The first is that, in a sense that is relevant for applications, mul-
tiple operators are necessary for the deconvolution problem to be well-posed.
We present examples to illustrate the ill—posgdness of single operator decon-
volution, and a theorem which shows that, except for an unintéresting case, m
must be greater than one in our problem statement.

The second topic is that of identifying convolvers ul""'“m for which
equation (1) holds and the construction of the deconvolvers.

The final topic is the major one here: measuring the utility of a mul-
tiple operator design. We describe the result of our application of standard
methods of linear systems and random signals to the multiple operator type of
system of equations (1) and (2). This analysis was necessary if one was to
seriously consider multiple operator designs. While the extended bandwidth

was well understood, analyzed, and even illustrated in simulations, the

consequence of the introduction of noise and of design errors was not fully
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understood. It was clear that since the operator was linear and continuous
that there would be no instablity due to noise (at least for smooth approxima-
tions), which is already an improvement over the case of single operator
reconstruction methods [5], [14], [15]. However, the performance needed to
Se expllicity described so that standard tools such as resolution, equivalent
bandwidth, and signal to noise ratio woul) . be avallable for systems
engineering design studies.

This investigation was motivated in larée part by the potential appli-
cation of these multiple operator methods to electo-optics, especially to
imaging devices. We have in mind imaging devices that are for the detection,
transformation, and display of electromagnetic radiation for a human observer
as well as such devices for artificially intelligent “observers."” The prob-
lems and the desired solutions have the flavor of this application. While the
analysis and the results are in a sense general, much is framed and guided by
the motivating problenms.

This interest in electro-optics is made explicit in the last sections of
*his paper. ‘There we examine convolvers and additive noises of the type
encountered in imaging detector arrays. The method developed here for general
performance comparisons is used to compare conventional detector arrays with
arrays configured such that equation (1) holds (up to the resolution limita-
tion impesed by a choice of optical sampling rate). In terms of the familiar
parameters of resolution, modulation transfer function, and signal to noise,
we show that the performance of the strongly coprime design exceeds that of

the conventional design. Moreover, the comparison has a quantified, function-

al form suitable for system design trade-off studies.




2. THE NECESSITY OF MULTIPLE OPERATORS

Recall our mathematical problem statement from the Introduction: wunder

what conditions do the compactly supported distributions Hyobyeooop ON R"
have assoclated to them compactly supported distributions vl'vZ""'vm such
mn
that Y p,ev, = &7
1=1 1 1

Here we offer some observations and a theorem which motivate this state-
ment. A brief demystification of “"compactly supported distributions” is given
in the Appendix.

In Fig. 1(a) and in the problem statement, the integer m, the number
of distributions Hy» is not specified beforehand. The number of distribu-
tions as well as the distributions Vyroooov are parts of the problem. 1In
the example above for R it was stated that m = 2 sufficed. When the My
are characteristic functions of cubes on Rn. then there are choices for the
Hy such that m = n+1 s sufficient.

Fig. 1(b) represents a different, more restricted problem: it repre-
sents a restriction of the problem statement above to m = 1. We show below
that there is oﬁly one trivial case in which a single compactly supported dis-

tribution has an associated compactly supported distribution vo such

My

that 8. Before presenting this general result we briefly review

Ho®¥o =
three well known observations which help to motivate the problem statement.
For these remarks let Ho be the characteristic function of the interval

(-1,1) in R (uo takes the value one orn the interval and zero elsewhere).

Observation 1. There can be no such vy if we permit the input signals f
to belong to any space that contains C(R), the continuous functions on R.
If such a Yq existed then, for any continuous f, vo-(uonf) = f. But

for f continuous, uoof is (represented by) a continuous function and,




hence, for fn(x) = gin(nex), n=1,2,..., {t is easily checked that "O'tn
is zero everywhere.

The problematic functions fn in Observation 1 can be eliminated by con-
sidering only functlons in LZ(R). For in this case we can consider Fourier

transforms of f, of . (g 1s in LY(R)), and of ugef (in L2(R)).
sin w

-

Let ;0 denote the Fourier transform of Ho- Since po(w) =2 , W€ R,

then (MOOf) = uof determines f almost everywhere. Since the Fourier

transform is an isometry from LZ(R) to LZ(R), f 1is uniquely determined by
uonf. But still:

Observation 2. There can be no such vy even if we restrict the input

signals f to belong in LZ(R).

If such a Yo existed, then let [-M,M] be the support of Vo Let
be the characteristic function (-(M+2),M+2) and let fn(x) = sin nnx,

a2
n=1,2,... . Then “O.(fnzM+2) is zero on (-{M+1),M+1), hence
vo'uoc(fnzn+2) is zero on (-1,1).

The difficulty in Observation 2 is due to the fact that we seek vy with
cormpact support. What if we dropped this requirement? This would be proble-
matic for applications, for then to get better estimates of f from uo-f we
would have to process larger and larger subsets of the domain of pocf. But

even if we could tolerate noncompactness, there is still a problem of bounded-

ness or continuity.

Observatijon 3. There can be no (non-compactly supported) continuous linear

operator L from LZ(R) to LZ(R) such that L(pocf) =f for all f in

L2(R).
The difficulty is that convolutlion with Ho does not carry LZ(R) into

L2(R). For example, let wc be the approximate identity defined by wc(x) =

0|~
(]

1 x 1
EE“O(E)' x € R. Then the L° norm of wc is |wc|1 = 1, while wcl2
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for the L2 norm, and ‘E'”O converges to [ in L?. If L existed as
described, then by continuity

L(uo) = L(éi; wc'uo) = :i; L(vc-uo) - :i; ‘c'

These observatlons illustrate ways in which the problem of inverting the
convolution or solving the convolutlon equation uo-f = g for a specific Mg

fails to be well-posed (that ls, that the solution f to poof = g exlsts,

is unique, and depends continuously on g) even with a variety of restric-

tions on f. Our problem statement in part seeks to find m and pl,...,um
such that the inversion of the simultaneous distribution equations u1-f =
gl.....um-f =g, is well-posed, along with an extra condition on the form of

the inverse. But possibly our observatjons were due entirely to an unfortu-

nate choice for the distribution Ho Possibly there is a compactly supported

Hy for which there exists a compactly supported distribution vy such that

pl-vl = &. This issue is settled by the following theorem.

Theorem. Let Hy and vy be compactly supported distributions on R  such
that MoV, = 8, the Dirac delta distribution or unit impulse (at'thé origin
in Rn). Then there exist a € R"  and CeC, C= 0, such that Hy = Céa,

the Dirac delta distribution translated to a € R".

Proof. See Appendix.

These observations and this theorem are primary examples of the difficul-
ties that are avoided whenever we can use multiple operators ul,....um for
which equation (1) holds. Of course, there is a vast literature and many
approaches to address the difficulties of ill-posed problems such as the
inversion of a single convolution equation [15], [17] and [18]. Our interest
is in exploiting those cases in which using multiple operators we have a well-

posed inverse problem. In the next section we identify some of those cases.
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3. EXISTENCE AND CONSTRUCTION OF DECONVOLVERS

Our problem statement is typically viewed in two parts. The first part
is existence, the identification of sets of convolvers ”1""'“- such that
deconvolvers Vieorea¥y exist. The second part is the explicit representa-
tion of the deconvolvers.

These problems are addressed using methods from the study of analytic
functions of several complex variables. For if Hy is the distribution on
R" with compact support, then its Fourier-Laplace transform ;1 is an analy-
tic function on ¢". Moreover, I;l(z)l. z € €" increases for large |zl =

I(zl,zz....,z yI = [zlzilz]v2 in a2 manner which completely characterizes
i

these analytic functions which are transforms of distribution of compact
support (the Paley-Wiener-Schwartz theorem, see Appendix). Thus for a given
set of convolvers Hyoooo oMo by taking transforms the existence of the

-~

deconvolvers is equivalent to the existence of solutions vl.....vm of the

analytic Bezout equation

m
Zui(z)vi(z) -1, zec" C (3
i=1

with vl,. .,vm each in the Paley-Wiener class of functions.

In this form one quickly sees that a necessary ccndition on the convol-
vers My is that they have no common zeros. Moreover, because the ui are

to satisfy certain growth conditions for large |z|, one has a stronger

condition which turns out to be both necessary and sufficient.

Theorem (1], [16). For the compactly supported distributions Hyv---oMON
R" there exists compactly supported distributions vl,...,um such that
m |

T H oV, = & If and only if there exist positive constants <, and c2 and
1=1
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a positive integer N such that

. 172 : .
[Z“‘x(’”z 2 cpe callm zl 3 11N, 2 e ™ (4)
i

A set of convolvers Hyoooooby that satisfies the inequality in the

theorem is often referred to as strongly coprime.
The following sets of convolvers are known to be strongly coprime:

i) on R2 the characteristic functions of two disks wherein the ratio

of the radii of the disks has any integer value from 2 to 200

(7);
ii) on Rn, the characteristic functions of n+1 cubes with side
2 2
lengths Syve 0S4 such that Syr---2Sp,q @re integers that are

pairwise relatively prime and at most one of these integers is a
perfect square of integers [7], [11].

The example of the introduction falls within case ii. Another case which
is known is the characteristic functions of certain rotations of three squares
in the plane (7].

Explicit formulas for the deconvolvers have been found for the disks on
R® (case i) and for n =1, and n=2 1in case ii [5) - [8]) and [14). For
example, the explicit solutions for the deconvolvers Vi v, for n=1 in
case ii is the following. For i = 1,2, a, >0, let X be the character-
istic function of the interval (~ai,ai), with a, = V?al. Let ¢ be any

smooth function. Then v and v such that 11-u1<+12-v2 = § are given

1 2
by
2 3
_ 1 1 24 d
Vi*® = g e X" T gaa 83 (1p00) ¢+ —5 (1K )e¢)
172 1 dx dx
where




® sin Lo
K,(x) - 2—:% Z —;——[[—.-,—l.z—l—;j.
s,

k=1 k"sin

and v, and Kz are given by the permutation of indices. Note that the
support of v, is contained in that of z,. and the support of v, is
contained in that of 11.

Throughout the foregoing we have emphasized that we seek deconvolvers vy
which have compact support, and we have described necessary and sufficient
conditions on the convolvers Hy for these to exist. The explicit determina-
tion of whether the “i are strongly coprime and the explicit construction of
the deconvolvers is typically too restrictive an approach for general engin-
eering applications, and new numerical optimization approaches are being
developed [10]).

There is, however, a middle ground that we use when we have a set of
strongly coprime convolvers but do not have explicit representations for com-
pactly supported deconvolvers. These alternatives are due to the.fact that
fhe deconvolvers are not unique. To see this nonuniqueness, consider the one-
dimensional example of the Introduction. Let Hy and M, be compact
supported and strongly coprime, and let vy and u2 be compactly supported
deconvolvers. Let A be any compactly supported distribution. Then it is
readily seen that both vi =gt A-uz and vé = v2-A-p1 are compactly

2
supported and 1§1ui-v; = 8. Going further, it was not necessary that A be

a compactly supported distribution. That is, we can construct deconvolvers

that are not compactly supported.

We frequently use approximate deconvolvers even when they are not com-

pactly supported. For example, let ¢ be any integrable, smooth function




with integral over R equal to 1. Then, for 9t(x) = %o(g). viee, 15 an

approximate deconvolver and v’-pr converges to ’l as T—0. Ve can

choose, also, that the Voo, be L’ functions. Let ; have compact
support and be sufficiently differentiable. (The function ¢ 1is usually
called a mollifier.)

Finally, we can construct approximate, non-compactly supported deconvol-

vers on R" solely from the knowledge that the convolvers are strongly

coprime. Llet w = (wl,....wn) = Re 2z = (Re zl.Re 22.....Re zn) and for what

follows we will need to consider the Fourier transform only on the real sub-

space R" of €™ Since M € C"(Rn). and with ¢ € Cm(Rn). with ¢ com-

pactly supported, let

D (w) = - ﬁ = Di(w);(w). i=1,...,m (5)

n

This defines h, € Ll(Rn) such that } hisp, =9 (z denotes the complex
i=1

conjugate of z). This is the class of deconvolvers that are discussed in the
last section, because from among these one can find optimal deconvolvers when

there is additive noise.

4. PERFORMANCE OF OPTIMAL DECONVOLVERS.

While (5) i{s exhibited essentially by inspection, the result can be
obtained in a more systematic fashion as well as in a more general form. We
first recall some standard tools, apply these tools to a simple case, and then

proceed to the more general form. The diagram in Fig. 3 represents an




operator L acting on & function f. Let (temporarily) f be bounded and in
C'(Rn). Let Byo Bou- ool be an arbitrary set of m distributions with com-
pact support. For each linear operator defined by H, let " be a sample
function of a zero mean, wide-sense statjonary random process that is added to
the output of u,, let 7, e L™(R™), and let Nf (N, 2 0) be the noise
power spectral density of the process (see, for example, [19) Ch.4, Ch.6).

For each distinct i and J let n be independent of nJ and let each nJ
be independent of f. Let v, be defined by (u1-¢)‘ = Di;. vhere ¢, D, e
Cr(Rn), ; has compact support, and r 1is sufficiently large so that

[Di¢]A e LYR™). Let g e L®R™) be defined by

m
g = Lf = Z(pi-f ¢ n)e (v 09). (6)
i=1

In the usual manner, with E denoting expectation,

m
E{g} = :z:“i'f'("i'¢)' (7)
i=1
Let T; denote translation by vy, T;(x) = x+y, let ~ denote inverse
Fourier transform, and let | "p denote the Lp norm. Directly from the

definition of wide-sense sialivnary and nnise power spectral density it

follows that

m
E{(g—E(g))[(g-E(g))oT;’]} - [anlniﬁ&lz} (y). (8)

i=1

and, for y = 0, that

m
efie-ecen?} - L1y Win 2167 (9)
(2r) =1 1




The simplest configuration for L is all distributions equal, all decon-

volvers trivial, and all random processes identically distributed:

My = B Yy =8, Nf . Ng. for 1t =1,2.....n. (10)
Then
2 - 2
E(g) = mugegef, E{(g-E(g)) }= (2:)nunol¢ln2. (11)

The utility of (7) - (8) or of (11) is that If L 1is followed by a

linear operator U with kernel u (which could model a specific "end-lUse")

then one can compare the function (u(E(g)))2 with the constant function

E((u(g-E{g)))z). In the case of the simplest configuration, (10) and (11),

there are the following formulas and bounds.

(L(E(g}))° = E{ug)® = (u-(mu0-¢-f))2 - mz[(iﬂo&})']z (12)

A

m s 2
P _jup et ]
[ (2zm® 9 1

A

mo )2, 22 %2 2.0,
[—(;n)—n] Iluu0¢llz llfllz .when f el (R);

and

E{(u(g'-E(g)))z} = =1 nH;NO;Hg- (13)
(2n)

The function E{ug} 1is referred to as the signal, its square E(ug)2 is

referred to as the signal power or energy, and E((u(g—E{g)))Z) is referred

to as the noise power. Typically the ratio of E(ng)2 to E((u(g—E(g)))z)

is considered or, alternatively, the positive square root of the ratio. Here

we shall consistently use the latter. If this ratio is evaluated at some dis-

tinguished point, the value defines a "signal to noise ratio." We denote by

9 the evaluation of the absolute value of the function at so.e distinguished
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point. Civen L and for a givencholice of ¢, f, %, and 9 define the

signal to noise ratlo

PuUEEH (14)
5 /72
[E{(u(g-E(g))) }]

YNR(UL) =

For a fixed choice of ¢, f, U, and P, two operators L and L° can be

compared and ordered by (14).
On the other hand, for a choice of ¢, £, U, and 9, (14) is determined

for the case of the trivial operator in (10) by the pair of functions

-

my and »’ENO. (15)

In general, let operators .L and L° (for example, as in Fig. 3) have trans-

fer functions and noise power spectral densities g, N2 and u’, N’2,

respectively. For a choice of U we shall say that uL|uL’ (i.e., "UL

divides UL‘") if there exists a "quotient" function ¢ € L®(R") such that

A A A a a AZA

uqu = up’. If 1UL|UL’ and |ql IulzN2 < InlzN'z, we say that uL 2 uL‘.
This definition is motivated by the following. A5 usual, let ‘¢ be such

that a linear operator 2 with kernel ¢ can be associated with gq by

-~ a

considering q¢. Let % be any continuous, translation invariant, linear
operator. For fixed U if uL 2 UL’, then ;%;%%%%&% 2 1 . Consequently,
sup ¥AR(USL) 2 sup ¥AHR{USL').
2 8

Next consider the operator L diagrammed in Fig. 3 for the case in which

“l' pz,....pm are distinct and strongly coprime (i.e., satisfy (4)). An

m
obvious consequence is r Iui(u)l2 > 0 and, equivalently,
i=1

n

0 * (Ll(w).L2<w).....;m<u)) ec”, ouekr" (16)

Consequently we can visualize (16) as is shown in Fig. 4a. A similar




fillustration can be used to visualize ;(0)(ﬂ1(0).ﬂ2(0).---.;.(0)) =
(;(u);l(u).;(u);z(w).....;(u);.(u)). except the "curve” passes through the
origin if and only if ;(u) = 0. The power spectral densities are real and

nonnegative (thus we write Nf and choose Nl 2 0). Assume

N, (0) > 0, wekR', 1=12....m. (17)

We can visualize (17) as is shown in Fig. 4b. The case of strongly coprime
multiple operators has the useful feature that the consideration of (16) and
(17) pointwise in conjuction with (7) - (9) uniquely determines an alternative
choice for the Di of (5). This choice will be optimal in the sense it has
the smallest E{(g-E(g})z) among all sets of deconvolvers.
Proposition. Let N, € L™(R"), N(w) >0 for weR', 1=12...,m Then

there is a function D : RT—c¢" uniquely determined (almost everywhere) by

the condition that for each w E'Rn. D(w) = (Dl(w).DZ(w).....Dm(w)) solves:

m m
Minimize zi:lzilzN?(w) on the set {z e c” . :E:ziui(w) = 1}. (18)
o=l

i=1

In fact

P)
D, (w) = ! (19)
u

Proof. Any 2z that satisfies (18) is clearly contained in the linear

subspace of ¢ determined by the span of
((ul(w),o,....O), (O.uz(w).o.....O)..... (0.0....0,um(w))}. (20)

That is, z1 =0 |if “l(“) = 0. Equivalently, there exists A =

2.18




]
(al.az.....an) € € such that
(lel(U)'zzNZ(w)""'szm(w)) = (Alul(w).Rzuz(w).---.Rmum(w)). (21)
]
Let ¥’ denote )X . Then (18) reduces to
i =1
pi(w):o

Minimi T i 121, (W) 12 {E'A l;l(w)lz 1} (22)
inimize M, (w on = .
© i SR NEAC

From this it follows that the Ai are all real, so that (22) has the form

. ) . ny (o)
Minimize 2’(Ai|pi(w)|) on {E’Ailui(w)l N o 1}. (23)
i i i

With the new variable Ailui(w)l, it is elementary to see that (23) has the

unique solution

[ui(w)[

- N, (w) -
Ailui(w)| = i 5 (for ui(w) z 0). (24)
|uj(u)|

1 N?(w)

N K

J
Consequently, from (21), the unique z corresponding to the minimum is D(w)
as in (19).

In addition to Ni >0, i=12,...,m, we shall assume N0 > 0.
Further, we shall assume that the Ni are sufficiently differentiable and
that %— = 0(]u|p) for some integer p, {1 =0,1,2,...,m (that is, 1/Ni

i
does not grow faster than lep). With this we can find ¢ = O(]wl-p ) so

that (Di¢)' e L2(R™) and for ¢ sufficlently smooth and with compact

support then (Dia)' € Ll(RnL

Corollary. For the choice of Dl from the Proposition,
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tud =1 | Lo %W ] = = Iny : (25)
1=1 1=1 T
J=1 N°

Let LO identify the trivial configuration of L 1in (10) and let LS
identify the strongly coprime configuration. Unless explicitly indicated to

the contrary, Ls indicates that the deconvolvers Di of (19) are used. The

first of the functions in (25) is the transfer function for LS and the
second is the square root of the noise power spectral density. The corres-

ponding functions for L0 are (15). The mollifier ¢ is suppressed but

understood. From (25) obviously leL for any operator L. (With an abuse
of notation we use L, LO and Ls to denote configurations consisting of

linear operators and additive noises.) From (15) and (25) the quotient ¢

2

for L = L0 is M- Let Ns dencte the noise power spectral density of

Ls. In the sense discussed earlier let 90 denote the linear operator asso-

ciated with LA That LSIL0 with quotient mu, means Lo = QOLS. Then

DOLS has functions corresponding to (25) (transfer function, square root of

noise power spectral density) given by

ek

m 0

m m 172 2 172
- - ‘ - - 2.2 NO Ve
muozg:uiDi = my,. [mp0|NS = m|u0| :E:IDi| Ny = —3 mN, . (26)

i=1 i=1 mful

'zl N2

TR

By definition UL_ 2 UL, if |mﬁ0|NS(w) < VENO(w) on the support of u, and

0

W, 2 u_ if u ju_ and lmuole(w) 2 VENO(U) on the support of u.

Thus, whether 1UL_ 2 nLS or uLs 2 UL  holds depends, in part, on whether

0 0
one of the following inequalities holds on the support of u : from (15} and

(26)




= 2w %
2 [N (0) 5 VEN_(w) O jm?] 2 vElp.(w) (27)
|np0| (W) (@) = |"i W) | < n]uo w)|.

i

=1 Nf(w)

In (27) the notation means that the upper inequality symbol on the left is to
be paired with the upper inequality symbol on the right and lower left with
lower right.

The comparison in (27) can in special cases be viewed from a slightly
different perspective. First, view the left side of the second inequality in
(27) as the Fourier transform of a kernel. Define

- Ng(w) - > 1/2
e = [N —— Ju@? (28)
1
Ni(w)

i=1

-~

We refer to e as the envelope transfer function corresponding to the
envelope operator € for a given strongly coprime Ls in comparison with a

given L If vmE acts on Ls’ then the pair of functions associated with

o
vmEL  is
S

-
-

vme, VENO. _ (29)

Recall that the pair for L. 1is given by (15) (rewritten for convenience)

0]

m VENO. (15)

That is, the composition of vmEé with Ls has a noise power spectral density
equal to that of LO. If, for example, ;0 is real and positive, then it

makes sense to compare (29) with (15). It is easy to check that the condition
;VE; 2 ;m;0 (on the support of ;) coincides with our definition u_ 2 uLO,

CRN -~ -~

and umug 2 uvme coincides with what we mean by W, 2 WL_. These two

inequalities are precisely the content of the comparison of the right side of

(27). One could say that vm® 1s the normalization of Ls to the noise




power spectral density of LO'
For either point of view we consider W, = {w e R” : elw) 2 VE|uo(w)|)
and W = {ve R" : e(w) < va|u,(w)[}. For all U such that u has support

in H> it follows from (27) and the definitions that an 2 uLo.

Consequently,
PAR(UD L ) 2 ¢ N
0s - ' , ol2 > 1, (30
$NR(UL) . vVm Hy -
u = ¢ N0
¢ 2

)

where @ is used to denote the linear operator corresponding to the transfer

0
function L of LO.
Assume uO(O) # 0 and define

9, ={ve R" : vt e [0,1) |;0(tw)| > 0}.

Note that for Rl the usual definition of limiting resolution is sup QO‘ If

supp{u) is compact and supp(u) ¢ QO’ then uagl makes sense, consequently

o

uL0|uLs. Hence, if supp(u) 1is compact and supp(u) c H<_n QO' then HLO 2

uLs. Consequently,

A A W
| el

o -1 =
FAR(W L)

FNR(UL )
S

In general the inequaiity cannot be extended to all of H( n QO because of

the behavior of l/p0 on the boundary.

FAR(UL )
s
There is no information regarding implied by elther UL 2 UL
Yﬂi(uLoi s

or uLo 2 UL . Additional information {s needed. For example, it may be

sufficient to know the effect of the so-called "boost” uL0»—+uﬂ;1L0. In

< 1. (31)

0




N

particular, if supp(;) is compact and supp(n) ¢ ﬂb then

. PHR( nn;‘l.o) SHR(UL)
supp(u) ¢ W_ and —JNR(LT 2 1 2 1, (32a)
> N HLO ?Nf{uLoi
and
-1
.W/R(nﬂo LO) ym(m.s)

For supp(u) ¢ R -0 or even for supp(u) n (R“-no) 2 ¢, it is often

0'
the case in applications that nLo is not defined. Since an is defined

for all U it makes sense in such cases to consider uLs 2 uLO.

§. EXAMPLES: OPTIMAL DECONVOLVERS FOR CHARACTERISTIC FUNCTIONS OF SETS IN R"

Collections of sets in R" such that the characteristic functions of the
sets in the collection are strongly coprime have been described in Section 3.

Let g denote the characteristic function of a set S. Consider the
case in which the noise power spectral density has the form uzsnlNz, whefe
“ZSHI is the L1 norm of ¥ (equivalently, the Lebesgue measure of the
set). For such a case, let sets SI'SZ""'Sm' be chosen so that, for My =
zs‘, the ul.uz....,um are strongly ccprime. Then, from the Proposition in

i

the previous section,

ui(w)

{33)

and (25) becomes

2.23




L n 5 NZ 1/2 3 5— 172
Yap =1 Y o P - . ™ N, (34)
i=1 i=1

J=1 Ju,l,

Let S0 be any set, let Hy = Xg be its characteristic function, and
0

consider this to be the convolver in LO defined by (10) (i.e., m parallel,

identical convolvers). Let the noise power spectral density have the same

form as above, Ng = HuonlNg. From (27) and (28) one obtains an envelope
transfer function cd and the associated comparison for these two: a
convenient renormalization by the constant Hnoﬂi/z is made in
- y, -

R - m |p.(w)|2 172 [, (w) |

e (w) = L) . —— s Ve 2 (35)

d hu 1272 i, = gut?

Mol i=1 "Hily Ho'y
2

For an explicit example let Si cR be the region in a focal plane of
an imaging device which corresponds to a single light sensitive detector. The
exposure time interval is assumed fixed and the image fs assumed constant.

Then My = is the idealized response function of the’detector. (The

s
i

actual shape of the response function can be incorporated into the mollifier

¢ of Fig. 3. That is, if ai is the actual detector response function,

and if the deviation of ai from Hy is due to, say, a material diffusion

process that is common to all detectors, then ai = ui-w, where Y models

the diffusion. Such a common ¢ would not be deconvolved; one would use

m

) ui-w-ui = ¢.) Then My is what is referred to as the "detector MIF." The
i=1

form of the noise power spectral density above is that of many noise processes
in electro-optical detectors, that is, that the noise power spectral density
is proportional to the area of the detector. Such is the case for infrared

detectors and this proportionality is contained in the definition of the fami-




liar 'D..' The above form is also valid for the so-called background limited
case. It also has this form for R3 when the time interval {s included as
the third dimension. Further, a background limited slit detector corresponds
to the above forms for 81 with the slit width as the coordinate. (The
background limited case consists of a relatively small signal of interest
superimposed on a relatively large constant signal so that the noise in the
signal of interest is due to the "shot" noise of the constant signal.) (For
detector characteristics discussed above see, for example, [20, Ch.2].)

In Fig. 5, Fig. 6, and Fig. 7 the transfer functions for such cases are
shown. In Fig. 5, a comparison is shown for the example in Rl described in
the Introduction. The characteristic functions M and Hy for the two
intervals (-1,1) and (-v2,v2), respectively, are strongly coprime. The

-~

envelope transfer function €y is shown and is compared with the transfer
function for the two identical, parallel convolvers as in (35) where Hg = “1'
The choice Hy = By is used rather than Hy = by in this comparison because
Hy is "better" than My in the sense that the first zer? of ;1 (i.e., its
bandwidth) is greater than the first zero of ;2. Recall from the scaling
property for Fourier transforms on R1 that ul(x) = uz(Vix) for all x € Rl
if and only if V§;1(V§u) = az(w) for all we R.. 1In making the comparison
we use two (i.e., m = 2) identical parallel convolvers rather than only one
so as not to bias the comparison in favor of the strongly coprime case. In
terms of the applications to electro-optics, the m strongly coprime detec-
tors must make m sequential measurements of the optical signal, and the
noise for each measurement is assumed independent. Consequently, there is an
inherent noise averaging due to these m measurements, and we wish to have

the number of Independent measurements the same for both cases. The case of

sequential measurement with identical detectors for noise averaging is exactly




what is done in so-called “time delay integration” for scanned infrared
detector arrays (21). Fig. 5 illustrates the consequence of the strongly
coprime condition: the envelope response is approximately an envelope for the
modulus of the other two responses and, correspondingly, is without zeroes.
Also, it can be observed that the envelope response decreases approximately as
171wl

In Fig. 6 and Fig. 7 the envelope transfer function is shown for an
example in R%, the case of three squares Q,.Q,,Q; of side length 1,v2,V3,
respectively. The characteristic functions of these three squares are strong-

ly coprime. The comparison (35) is illustrated by graphing the modulus of the

corresponding transfer functions for two subsets of Rz: the wl-axis

{w = (wl,wz) € R2 P e, = 0} (see Fip. 6) and the diagonal {w = (wl,wz) € RZ :
w, = w2} (see Fig. 7). All graphs use the Euclidean distance‘as abscissa,
lwl = (w2+w2)1/2. The comparison illustrated in Fig. 6 and Fig. 7 is for

1 2

-~ -~ -~

Mg = 101. (As before, 101 has the greatest bandwidth and the scaling prop-
erty for R" has the form ul(x) = uz(kx) for k> 0 and for all x e R"
if and only if knal(kw) = ;Z(w) for all w e R".) The comparison is .
essentially the same as that for the two intervals in Rl. The difference
between the wl—axis and the diagonal illustrates that approximately the
envelope response decreases as le-l along the w1~axis and as Ic.)l-2 along
the diagonalz

From (35) (and as illustrated by the figures) the following statements
can be made. These are stated as "observations” because the results can not
be given in terms of explicit inequalities. Some notation is helpful. Define

m

Q ={weR : Vvt e[01] |p(tw)| >0} and 0 =nA,. (36)
f=1

Observations. Let “1'“2""'"m € Ll(Rn) be strongly coprime characteristic

2.26




functions of sets in R" as considered above. With each By let there be
associated as in Fig. 3 an additive wide~sense stationary noise with noise
power spectral density of the form '“1'1"2' Let Ls be the configuration in
Fig. 3 with deconvolvers determined by the Proposition. Let LO be the

trivial configuration as in (10) with Hy = Ky» No = Nl'

Observation 1: For U with supp(u) ¢ Q, an = .

Observation 2: For U with supp(u) ¢ R%- U Q, uw_ 2 u,.
i=2

R m
Observation 3: For 1 with supp(u) ¢ U 2, -0, W_ < ul,.
i=2

Observation 4: For U with supp(u) compact, supp(u) ¢ ﬂl. let D;l be

the boost on U, UL r—aﬂﬂalLo (see (31) and (32)). If Observation 3 can

0
be neglected then

eaR(ua- L) PHR(UL )
00 > 1 s o 1
YNR(ULO) - YN?(HLO) -

As discussed at (31) it is not possible to extend this to all of 91.
for ;1 = 0 on the boundary of Ql. Jdowever, it still is desirable to have a
means to compare Ls with the more well known, more thoroughly studied
trivial configurati- 's. In the next section this is accomplished by pushing

the troublesome set (ul = 0} out toward infinity.

6. - MORE COMPARISONS: STRONGLY COPRIME VERSUS CHANGE OF SCALE

Let Ls be the same as above. In the above LS was compared with LO'
where LO was chosen to be “1 and Nf = ““1“1"2 . In these cases "1 was

the "best” in the sense 0, ¢ Ql i =1,2,...,m. Here Ls will be compared

i
with a one parameter family of such L. Define L° by the trivial configura-
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tion of = parallel, identical as in (10), where Ni = lu<°>|1N: and

x
u<°>(x) = "1[3]' a> 0.

The primary result of this section is

Heo>

Observation for Fixed Number Of Channels. Fix the number of parallel convol-

vers in both Ls and L° to be m. Let the convolvers be characteristic

functions of cubes on Rn and let the additive noise be as above. Assume
R m
that 1 1is such that supp(u) ¢ U {(w e R . Wy 0, 1 # jJ}. Then for
J=1

uLs 2 uL° for all 0 < a& < 1. (40)

Corollary to Observation. For the conditions in the Observation above, it

is advantageous to construct Ls using sets that are as large as possible.

Application of the Corollary. In parallel scanned imaging systems with square

detectors wherein the systems are ranked using some U meeting the conditions
of the Observation (e.g., horizontal or vertical bars), the detector size
should be sufficiently large so that the array of detectors fills the image,
and the detector sizes in the érray should consiitute a strongly coprime

collection. (This application depends on sufficiently high sampling rates.

See Section 1.)
The Observation is illustrated in Fig. 8 for n = 2. For Fig. 8 Ls is
as in Fig. 6: 1in the notation just above Ls is configured from the parallel

convolvers Heps ez Bo Ayt and My is the characteristic function of the

unit square. For this LS the envelope transfer function € is compared

-

/2’
Ihg ol

see Fig. 6; for & =0.5, 0.2, and 0.1, see Fig. 8. The observation in

with V3 as In (35), for a4 =1, 0.5, 0.2, and 0.1. For a =1

(40) is clearly evident. (Here we neglect Observation 3 of the last section by




means of a broad interpretation of & in Observation 1.)
The Observation (40) depends on the following properties. The first,
which is again an approximation, is that for AJ = {w € R . W = 0, 1 = j},

the w,-axis,

J
e | (w) = Clo|™}. (a1)
d'A
J
A -~
[ s (@) 2 8y (a0 |
The second is that ——4mM—_ = & ———————. Hence, for n 2 2, for
TN bk I 01172
<o>'1 11
|ul(w)| -1 |ﬁ?°>(w)| -
a<1, and for we A, VM ——= < Clw| ~ == vm ————— < Clo| .
J TN el N b
171 <"1

Fig. 9 and Fig. 10 show two counterexamples for cases not addressed in
the Observation. Fig. 9 is for the case of the diagonal in RZ. and Fig. 10

is for n = 1. The Observation fails on the diagonal D =

- 2 -
{w = (wl.wz) € R : wy = w2) because

~ -2
eqlple) = Clu| ™. (42)

It fails for R because (41) holds.

If in place of characteristic functions of cubes one uses characteristic

A\
X 2 . . - |“<<>>
functions of disks on R, then the relationship between e and VE——————T7§

d
N

is intermediate between that of the wj-axis and that of the diagonal for

~3/2

cd(w) = Clu| (43)

The significance of Observation (40) is that it provides a qualitative
lower bound for the performance of the strongly coprime configuration. To the
extent performance is characterized for the uLo, the "envelope" consisting
of the collection over all o 1Is a lower bound for the performance of !LS.

All of the above has focused on performance away from the origin. If the




I

figures are rescaled so that the k., 8ppear fixed with a sequence of l.s
constructed from convolvers of increasing support, the Observation indicates
that nothing is sacrificed away from zero while the envelope transfer function
near zero is substantially increased. That lis, an 2 IlL° represents a sub-
stantial enhancement near w = 0, not merely approximately identical perfor-
mance. On the other hand, this uniform improvement is for the case of 1
supported by the axes. For the cases off the axes for cubes and for the case

of disks there is a trade-off between some loss away from zero and the gain

near zero.

APPENDIX: REVIEW OF DISTRIBUTIONS OF COMPACT SUPPORT

We present here a short review of some properties of distributions of
compact support in R" (sometimes called generalized functions). The impli-
cit reference throughout this Appendix is the very clear monograph [(22].

The simplest example of a distribution of compact support is obtained
from a continuous function F of compact support. (That is, F 1is zero out-
side a bounded set in Rn.) One associates to F a scalar valued linear

operator TF acting on infinitely differentiable functions f by the rule

<TF‘f> 1= I F(x)f(x)dx.
R"

The fact that supp F is bounded is what makes the above integral finite and
well defined for an arbitrary f. This linear operator TF is called a dis-

tribution of compact support.

If the function F were not only continuous but also continuously dif-

ferentiable, we can similarly associate a distribution to each of its partial




derivatives. Their relationship to TF is given by integration by parts:

8F af af
x| L R

This motivates defining the derivative a%— TF of the distribution TF by

J

the formula

d af
€&—T > := =<T_, =—>
) F’ F'dax, '
%3 J

which does not require trat F be differentiable. One defines in the same

lal

a
T.. a=(a,,...,a ), |la] =
ax%1. . . gx%n F 1 n
1 n

I way more distributions DaTF =
I al +...+a, by
l <D°'TF,f> 1= (—l)la,<T p%f>.

F,

Further, for any pair of continuous functions F,G of compact support,

and any multiindices a,B, the operator DaTF+DBTG
T+ DﬁTG,f> ;= DT >4 <DBTG,f>

is a linear operator on the space of infinitely differentiable functions.
The collection of all finite sums of this kind is precisely the space of
distributions of compact support in R". That is, for a distribution of com-

pact support u we mean a scalar valued linear operator which can be repre-

uo= ZD"‘TF.

la| <N «

sented in the form

for some integer N and continuous functions Fa of compact support ([22),

p. 74)).




Let us indicate how the unit impulse 6. at a point a € R can be

written in the above form. Let

0 if x<a
L(x) {;-a if x2a

and let ¢ be any twice continuously differentiable function of compact
support such that for some € >0 ¢(x) ®1 for a-¢ £ x £a+e. Then
(¢L)” = ¢“L +2¢’L’ +¢L”, and the function ¢’'L’ 1is continuous in spite of
the discontinuity of L’ at x =a since ¢ 2 0 near a. Letting F = ¢L
and G = -(¢“L+2¢‘L’) we get

2
d

%, = 3+ T¢
dx

The space of infinitely differentiable functions in R" is usually
denoted by & (or &R™) or C”(R™)) and the space of distributions of
compact support by €’ (or & (R™)).

We can essentially work with distributions of compact support as if they
were ordinary continuous functions of compact support. In particular, for.a
distribution T € &’ it makes sense to compute its Fourier-Laplace transform
T(Z) for C e €. Namely, let &ex = Exy ¢+ x (xR, gech,
then

T(g) := <T,e %%,
where i = Vv-1. For instance, for the unit impulse Ga at a point a € r"
we have Sa(c) = e-ic'a.

From the above representation of the distributions of compact support one
can see that the function CP—Q%(C) has two properties. First, it is an
analytic function in the whole of c” (i.e., an entire function). Second,

there are positive constants A,B,N such that T satisfies everywhere the

estimate




r

1T} s AC1e1gl)NeBI TR

Im § = (Im cl.....lm cn). It is usual to call the space of functions satisfy-
ing these two properties the Paley-Wiener class, Pwc™).

The classical Paley-Wiener theorem for functions of compact support in
2

LS can be extended to the case of distributions of compact support as

follows.

Theorem (Paley-Wiener-Schwartz). The Fourier-Laplace transform is a

one-to-one correspondence between the spaces € (R") and PW(c").

Recall now that if F and G are continuous functions of compact

support then their convolution FsG 1is given by

FaG(x) = J F(x-y)G(y)dy = J&(x-y)F(y)dy
n
R

and it is again a continuous function of compact support. Moreover, if one of

them is continuously differentiable, say F, then 5%—(F-G) = [gi ]-G. This

Y J J

observation allows for the definition of convolution of distributions of com-

pact support in such a way that if T,S € & then TeS = SeT € . The unit
impulse at the origin & acts as the unit of this product T#3 = T. Further-
more, (T-S)A(c) = %(c)é(c). so that the convolution becomes ordinary pro-
duct of the analytic functions % and é.

In this paper we were interested in solving the equation

ulnvl0... +um-vm = 4,

where Hyr-o- Hy are given in €&’ and we need ViseoeaVp € €. Using the

Fourier-Laplace transform this equation is equivalent to the analytic Bezout

equation




By (E)(Q) ¢ ...+ (O () ® 1,

with unknowns f.,...,f_€ PW(c"). In particular, to solve this equation is

1"

necessary that the functions ul.....p- have no common zeros in c”.

In the text we raised the question of whether one could find a deconvol-

ver v € & for a single convolutor p € &, 1i.e.,

puev = & or equivalently wp(C)v(g) = 1.

We need that u(f) # O for every ¢ € c”. It follows that there is an analy-

tic function h in c" such that

;(C) = eh(c).

-~

Since u is in the Paley-Wiener class one can show without difficulty that
Ih(g)} < A+BlIm ¢

for some positive constants A,B. Therefore, by the Liouville theorem, h

must be of the form

h(g) = -i(a1c1+... +an§n)-*c

for some a = (al.....an) € Rn. c € C. This proves, by the the Paley-Wiener-
Schwartz theorem, that pu = Céa, for some constant C € C.
Having no common zeros is not enough to solve the analytic Bezout equa-

tion, the necessary and sufficient condition is the following.

Theorem (1}, [16]). Given BisooooB € 8’(Rn). the necessary and sufficient
condition for the existence of deconvolvers vl....,vm € 8’(Rn) is that there

are constants € > 0, M> 0, C > 0 such that

mo. ,)172 LClin gl
:z:|uj(c)| 2 ¢ S—— - for all e c"
] (1+1g1)

2.34




Th's is a purely existencial theorem and the work in [S) - [10] consists

in obtalning explicit cholces of deconvolvers v LA This is not

1*°
trivial. A portion of the work (7] and [11] also consists in finding simple
and practical examples of CTRRRNY that satisfy the above necessary and

sufficient condition for the existence of deconvolvers.
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Figure 1. (a) Multiple parallel linear operators with distinct distributions
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CHAPTER 3

A local version of the two-circles theorem

by

C.A. Berenstein and R. Gay
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1. Introduction., =

One of the oldest questions in integral geometry has been

N from the knowledge of

that of recovering a function f in R
its average over balls. It is easy to see that unless f decays
sufficiently fast at infinity the average over all balls of a
fixed radius could vanish without f Dbeing identically zero. It
is not always possible to assume such decay but a very elegant
result of Zalcman [20} and, independently, Brown—échreiber-Taylor
[10), describes explicitly a countable set E. such that
averages over all balls of radii r,;, r, suffice as long as

r,/r, ¢ E . This-"two circles"™ theorem can be described as

saying that the map

c(rR®) + c(rR™) & c(rR™)

£+ (] f(yray., | fiy)ay)

B(x,r1) B(X¢rz)

is injective if and only if r /r, ¢ E_.
(B(x,r)={y anlx-y|<r}]. Under slightly stronger conditions on
the quotient r /r2 this map has also a continuous and explicit
inverse ([8]. This result and other variants ot the so-called
rompeiu problem have be2n generalized to symme:iric spaces 'see
t'.e surveys [21), [1) for positive results and their limitations)
In practical situations of a tomographic nature one is
limited to balls that fit into a fixed region . One could take

smaller and smaller balls when approaching the boundary N of

0, this is roughly the situation when we consider the case

3.1




0 = unit ball of R" as the hyperbolic space, but it is clear
that it might be hard to accomplish if we are dealing with
physical devices whose size cannot be made infinitesimally small
or cannot even be changed at will. It is this kind of problenm
that we call a local version of the two—circles theorem. The
main difference with the above mentioned results is that we do
not have any longer the whole group of Euclidean motions at our
disposal which was the crucial ingredient lying behind the two
circles theorem and its generalizations. The inversion formula
of [8] would allow us to reconstruct £ away from 31 but gives
no indication of whether we could change the values of f in a
collar-like region near 9Q without affecting its average.

There is some recent work on systems of convolution equations in
convex domains which deals with this type of guestion [4] but the
hypotheses required are far too restrictive to be satisfied by
our simple looking problems. Nevertheless, using a combination
of ideas from classical harmonic analysis and results of Cormack-
Quinto on the Radon transform on spheres [12] we are able to

prove the following.

Theorem. - Let r_ ,r

] 5 be positive numbers, r /r2 { E ,

1

n

. an open subset of R such that every point lies in an open

ball contained in §i of radius strictly larger than r1 + 22.

If £ € C(Q) satisfies

] f{(y)dy = 0 for every E(x,rj) €8, 3 =1,2
B(x,rj)




then £ £ 0. Furthermore, this statment does not hold if @
fails the above geometrical restriction.

The method of proof allows us to generalize this theorenm
greatly, providing in particular new local mean-value theorenms
for harmonic functions.

We will like to express our appreciation to Professor L.
Zalcman who called our attention to these problems.

The second author wishes to thank the Mathematics Department
of the University of Maryland for its hospitality while this work
was carried out.

2. Preliminaries. -

We will follow the standard notation for distributions found
. n = .
in [14). We denote B(x,r) = {y€R :Ix-y|<r}(r>0). B(x,r) its
closure and xr the characteristic function of B(0,r). Let{
. n c
be an open set in R, Qr = {xEQ:d(x,Q )<t}. For a locally-
integrable function f in an open set I the average

(1) A_(£,x) = ! / f(y)dy

w rn B(X,r)
n

is defined for x € Qr' Here wn is the volume of B(O,1). If
we let b, o= xr/wnrn, we can interpret this average as a
convolution and hence it makes sense to define it for f ¢ D'(R)
giving a distribution A_(f) in U'(ﬂt). namely

Ar(f) = f * ur. Therefore, for uniqueness questions, if the

averages of f are zero, by restriction ourselves to Qs' € > 0

small, we can assume f ¢ C.. Henceforth, all distributions with

vanishing averages will be assumed to be C= functions in Q.

o i 1 1 o B
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Por r > 0, we denote by °. the distributions defining

the spherical average

(2) A_(f,x) = £n_1 f(x+ry)doly) = (o _*f)(x)
do is the normalized Lebesgue measure on sn-1,

]
For T €L the Fourier transform

- -- x
T(C) = <T_ ,e 1 IC)>I (XIC) = z x. .,
x - 373
J
is an entire function in €" which satisfies, for some

A, N > 0, the estimates
(3) lT(zg)]| < A(1+|c|)N exp(H(ImZ)).

where t = &£ + in, £, n € Rn, Im{ = n and H 1is the

supporting function of the support of T, i.e,:
H(n) = Max{(xln):x(suppT}

Note that H is also the supporting function of cv(suppT), the

convex hull of suppT. The Fourier transform is an isomorphism
~

L
between the convolution algebra [ (rR") and F (Rn), the
algebra of entire functions of exponential type and polynomial

growth on the real axis.
A distribution T will be called invertible (or T is

-

] -
slowing decreasing) if whenever S ¢ € (R") and S/T is an




entire function, then there is a distribution U € E.(u") such

~ ~

that U = B8/T, that is
(4) S = T * U

and we have the identity

or, what amounts to the same thing
(6) cv{suppU*T) = cv(supplU) 4 cv(suppT),

where, for two sets A,B E_Rn we have A ¢+ B = {xty;xEA,yEB}.
We will need to use that ur is an invertible distribution.
This will follow from the explicit formula for ;r given beloy
and the characterization of invertiblé distributions: T is
invertible if and only if there is a positive constant a such

that for all & ¢ Rn

(7) Max{|T(E+nﬂ:n(Rn,|n!<a.log(2+|E|)} ? (a-"lil)-a

The Fourier transform of a radial distribution T is a

radial function, i.e.: if:

-1
<T,fohA > = <T,f>




-
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L
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1

for every A € O(n) then

T(Z) = T(A.Z)

for every A € 0(n), T ¢ c", and depends, for £ ¢ Rn, only

on |&|. Hence we consider the associated even entire function

of one variable by

=1

~ -~ -~ -~ 1
(8) T(|g]) = T(E) and T(L) = 'r((cf+---+c:)/%

[ ]
Let us call Eo(Rn), the space of radial distributions. This

correspondence establishes an isomorphism between the algebras

E;(Rn) and E;(R). Using this notation we have
n-2
~ _ 2 n n/2
(9) ur(t) = n2 P(z){g(tt)/(tt)
2
n-2 n-2
(10) Sty = 22 r®g (re)/(re) 2
r - 2’ “n-2 /(x
2
and, more generally, if f(x) = ¢(|x|) is a radial function of
compact support
n/2
- ~ (27) « n/2
(11) £(g) = f£(¢t) T IO¢(9) J_o (et)p /24, (Jg]=t)
2 2

t
To show that ut is invertible it is now sufficient to
recall the asymptotic development of the Bessel functions [19] on

the positive real axis




| -
(12) ey = Y %t /2 cos(t-%—-v—;-) + o(t" 32,

It follows, for |E] » 1 and some C > ©

n+1
2

Max{Iur(£+n)|:nekn,|n|<l} > cle]

which is the condition of invertibility.

From (12) we also obtain MacMahon's asymptotic development

of the positive zeros uk,v of Jv
0 < °1,v < °2,v < oo
{(13) a = (2k+1 LA (2vn)1+ o(1/k)
k,v )2 4 /

which will be used further on.

3. Series development of mean-periodic functions.

n and

Let  be an open convex set in R
L}
K = cv(suppy), v € E (Rn). We say that a function

f ¢ CQ(Q-K) is mean-periodic with respect to u if

(14) prf(x) = <uy,f(x-y)> = 0 for all x ¢

If an exponential-polynomial, that is a finite linear

combination of terms of the form x° el(xlc)




b b
(xj-x1‘...xnn, jk € N, 1 € X € n), is mean-periodic with respect

to ¥ then the frequencies { wmust satisfy

u({g) = 0 since

(e }c) ifx]g)

(15) (ueel y(x) = u(gle

-~

When the zeros of 1] are simple no non constant monomials

can appear. More generally if a monomial xJ appears with non
zero coefficient then
g1l -

(——Jutzy = o
ag?

for the corresponding frequency [.

For n = 1 there is a well-known series development for
such functions in terms of the exponential polynomial solution of
the same cobvolution eguation (14) due to L. Schwartz [18]), [15],
[13]. The case of interest for us is n » 2, U invertible. 1In
this case, a development in terms of integrals over the zero set
of ; has been proved when 1 = R" [6]. For 0 arbitrary
convex set, a similar development has been proved in (4] but only
for a very restrictive class of invertible distributions. 1In all
these cases one obtains also some knowledge of the behavior of
the terms involved in this development. Unfortunately, the
distributions ur, though invertible, do not satisfy the
conditions required in [4), as was shown (for a different

reason) in [3); moreover we are interested in £ = B(O,R).

Therefore we cannot depend on any of the previously known




resultg. We obtain here & series development without additional
information on the coefficients that appear in it; nevertheless
the existence of this development 1s all we need later.

Proposition 1 - Let §i Dbe an open convex subset in

1]
R™ (n>2), u €E (R") an invertible distribution,
«
K = cvisuppu). Any function f € C (f1-X), mean periodic with

respect to U «can be written as

(16) f(x) = ) P,.(x) (x€0-K)
j»1 7
with Pj exponential-polynomials also mean-periodic with respect

-]
to 4y, and the series is convergent in the € -topology of

Q9 - XK. Furthermore, given a sequence (sj)j>1 of positive

numbers, letting PO = 0, we can chose the Pj so that the absolute

value of all frequencies in Pj+1 exceeds the largest absolute

value of the frequencies in Pj by at least sj+1.

Proof. Let us show first that, for any s > O, the exponential

polynomials which are mean-periodic with respect to ¥ and whose
frequencies lie outside the ball of center O and radius s

in ¢" are dense in the space N = {fEC,(Q-K):u'f=O in ﬂ}. N

is a closed subspace of a Frecﬁet space and we only need to show

1]
that if Vv ¢ E (9-K) is orthogonal to the above exponential-

polynomials then Vv 1is orthogonal to N. Hence (v) is

"~

divisible by u at every point of c“\'ﬁ(o,s). Since n > 2,

. v

by Hartogs' theorem, (v) /u 1is an entire function. Since
9

1]
is invertible there is a distribution T € E (R") such that




¢
<

We need to know where is the support of T, By (6)

v v

cvisuppv) = cv(suppu) + cv(suppT)
or
cv{suppT) - K = cv(suppv) € 0 - K
By the Hahn - Banach theorem one concludes that
cv(suppT) € &

Hence <V,f> = (V*£)(0) = (T*u*£)(0) = <T,u*f> = 0 for f € N.
To end he proof oJf the proposition, we pick an exhaustion

of R - K by convex compacts sets K hence we can find P,y

jl
exponential-polynomial with frequencies lying in

{C€¢n:u(c)=0,|c|>s,} such that

suplf—Pll < 1.

X

Let o1 = maximum of the absolute values of frequencies in
P,. We can find P, with frequencies in

{Canza(C) =0, |z| > 32+a1} such that

max -uplbc(f-P1-P2)| < 1/2
la < X,
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Continuing in this fashion we obtain the desired expansion.

Remark. One can eliminate the requirement of u being

invertible by using [14,16.4.1).

From (9) we know that the zero variety of ut is the union

of the hypersurfaces
2 2
(17) 4 = c1+...+cn = xk K = 1,2,00.

where A = /r. We disregard temporarily the dependence

X %% ,n/2

on r though it will play a role later on. Furthermore the

function ;r(t) vanishes at t = Ak with multiplicity one, in
fact
n-2
d ~ L, 2 n n/2
(18) at ur(t) = n2 F(z)r J(n/z)*1(rt)/(rt)

and well xnown properties of Bessel functions show that this
expression does not vanish for t = Xk. Using the asymptotic

expressions (12) and (13) we obtain

(19)

d: n+1 _ n+3
o4 == = £ 2"V 2 () -0 0?4 o(x 2)
dt k k
We introduce some auxiliary radial distributions Tr X by the
’
formula
. ¥ (t)
(20) T (¢) = .
r,k tz_xz
X

3-11 -




They are even and entire since Et(*xk) = 0. Hence they

1 functions) whose

correspond to radial distributions (in fact el
supports are contained in the support of ur, i.e. B(O,r).

Furthermore they satisfy

2
(21) (8 + Ak)Tr'k = -u_ and
o ;r(kk) k+1 - n;3 - n;S
(22) Tr,k(xk) = —5y - = const.{-1) Ak + o(k ).

We remark that these distributions have conspicuously
appeared in previous work on the Pompeiu problem [2], [7]).

Proposition 2 - Let r > 0 be fixed., For any op, 0 ¢ p < =, we

can decompose op in the following form

3 o = vV + * S
(23) o o ut. o’
where S is a radial distribution, whose support satisfies
(24) supp Sp < E(O,Max(r,p)-r)
and vp is given explicitly by:
G _(A)
(25) v . - L ok AT
( k>1 x2 T (A.) r,k
Xk ‘r,k 'k

hence supp VD < B(o,r).

3.12
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Proof. de consider the series

o (A )
(26) gtey = [ 5= X 2 T ()
. > ’
k»1 Xth’k(Ak)
.. -2 ~ ~ .
The coefficients lk ap(kk)/Tr'k(Ak) are uniformly bounded

by a constant depending only on p as it can be seen from (10),
(13) and (22), sirnce Xk ~ const. k. Therefore, if

|t| < R- ny » 2R we have |t2 ;r k(t)l < const. k-z which
’

guarantees the convergence cf the series, and shows g is an
even entire function. We can obtain more precise estimates by
picking a sequence of circles of center 0 and radii

®
R = (4j+n+5) /4r, 3j = 1,2,..

Decomposing the sum into those terms where

Ak < 2Rj and Xk > 2Rj one can estimate the second sum over
= R. b
lt] = r; by
2~
Max [t€ u_(e)]. c (p)
r o
ltl=nj

The first (finite) sum can be estimated by

C,(D)(Maxltzat(t)l) (Hax 21 5 )
Itlaaj nj'£o<xk<2nj|xk-t [
where Qj c is the region obtained from Itl < Rj by removing
14
disks of radius ¢, 0 ¢ € very small, about txk. One can

then see, without difficulty, that the last sum is estimated by

const, fd In any case wve obtain as a final estimate
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Max  [g(e)]| < cp) max | (o],
|t|<Rj ltlﬂzj

Thus g defines a radial distribution of order 2,

vp, by ;p = g, one can see vp is given explicitly by (25).

We also have

with h even entire function since g(tlk) = Vp(tkk) = Gp(tlk)
by (26). Since v is an invertible distribtion it follows

h = gp for some Sp € Eo(Rn). The identity (6) gives
(27) cv(supp(op-vp)) = cv(suppsp) + cv(suppur).

There are two cases to consider. If p < r, then the support on
the left hand side of (27) is contained in E(o,r) and

cv(supp Sp) = {0}, which says Sp is a polynomial in the
Laplace operator; if p > r then the left hand side of (27) is

contained in B(o,p), which says cv(supps ) S B(o,p-r). 0

Remark The decomposition we have just given in proposition 2

works also if we replace ap by any radial distribution. We

need only -3 change (t/lk)2 by (t/lk)zq with q convenient

non neg: . .2 integer. 1In particular there is such a
decomposit. with oo = §, the Dirac mass at the origin (take
n+l N
? ) )
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Corollary 3 - Let f be a v, -mean-periodic function

C.(B(O,R)) {R>r). Let lxol ¢ R ~-r. Then, for any o,

0 < p <R - |x0| we have
Ep(xk)
(28) XA (f,x.) = (v _*£)(0) = -} A(T  *f)(x )
P 0 P k»1 22T () ' 0
k r,x k
Proof. 1t suffices to use (2) and (23). O

4. Local two-circles theorem.

Let r,, r, be two positive numbers and consider the

distributions ur ’ ur . They will have no common, mean-
1 2 ) -~
periodic, exponential-polynomials if and only if ur and ur
1
have no common zeros. By (17) this occurs if and only if

r /r2 $ quotient of two zeros of Jn

1 /2

The set

E :1<3 ,k¢m}

n - {°k,n/z/°j,n/2

is the exceptional set described in the two-circles theorem.

Proposition 4 Let R >r_ + r_, t’/t2 f En' The only

1 2
-«»
function in C (B{(O,R)) which is mean-periodic with respect
both ¥ and ¥ is the zero function.
Ty T2

Proof. We assume r, < rye Let f € C.(B(O,R)) be u

mean periodic. By proposition 1 we have

3.15
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£(x) = ) P _(x) (|x|<R)

321 J
where the frequencies appearing in the exponential sums Pj lie
in
n ° n 2 2
{zec L (g)=0} = U {rec":g =(ak n/2/t1) } = U vV,
1 k21 ! k21
We fix now k 2 1, and consider Tr k*f which is in
L] 1'
c (B(O,R-r1)), furthermore
(29) T *f = ) T *p
Tyrk j>1 Tack 3
If P.(x) = Z c el(xlcj,l) then
J z Jll
i(x|g. )
T *Pp . = C. T . e 2
r,,k j E j.2 t,,k(c),l) 3

but Trj,k(cj,l) + 0 only if %,R,GVk in which case we obtain
the value T (A\,) = 0 (where A is computed with respect
tl,k k k

to t1). Therefore

(30) T *f = T (A,) I &,
1 Tyek kD gy, 30K

where is the sum of the terms in Pj whose frequencies

Py.x

lie in V),. This series is convergent in C-(B(O,R-r1)). We

convolve now with ut « We obtain
2

(31) v o7 *f) = rr1'k(lk) v, (A ]

)
2 yoq Jo%
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since v is also a radial distribution. The expansion (31) is
2
valid in C.(B(O,R-r1-r2)). Since f is also ¥, - mean -
- 2
periodic we have

sw_oef)(x) = u_ (A (T *£) (x)
3 r2 r2 k r1,k

for |x| < R - r, - r,. The hypothesis r,/r, ¢ E, now inmplies

that urz(kk) 4 0. Hence

(32) (Tr k*f)(x) =0 for |x] <R -r -r

17 1 2

On the other hand we have (by (22))

(A+X:](Tt 'k*f) = -(f'ur ) = 0in [x|] <R - r,

1 1
hence Tr k*f is a real analytic function in |[x| < R - r,-. We
1'
conclude that
(33) (T *£)(x) = 0 for |x|] <R -
r1,k 1

Applying now corollary 3, formula (28), we have

,» 0 < p ¢ R - |x]

(34) Ap(f,x) = 0 whenever |[x] < R - r,

(We are allowed to take ¢ = 0 by continuity). In particular
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f(x) = 0 for |x|] < R - r,

To finish the proof of the proposition we need to show f
is zero in the remaining annulus, we do that using (34). It is
at this point that we use Cormack-Quinto [12). For any vy

B(O,R), consider RI(f)(y) = Xl (f,y/2). This is the Radon

yl/2
transform on spheres through the origin discussed in [12). We
want to show Rf(y) = 0, We only need to verify that the

conditions stated in (34) are valid. Here

p = |yl/2, x = y/2, hence
R - |x|] = R - l%l = R -p > R/2 > p

The only condition left to see is that |x| < R - r,.- We

have 2r1 < r, + r2 < R hence r, < R/2 and R - r, > R/2,
therefore |x| < R - r, holds.

ﬁy [12, corollary 2] f(y) = 0. (We note that in [12], théy
require that f Ca(Rn) while we only have f ¢ Cu(B(O,R)) but
the proof of corollary 2 depends on an explicit inversion formula
for the Radon trancform on spheres which uses, for each y, values
of f in a neighborhood of B(O0,|y[).) gd

Remark. The crucial point of the proof above is (32). One
does not really need the whole strength of Propositon 1 to obtain

it. One can get by using the density of the exponential

polynomial solutions in the sub-space N introduced in

Propositon 1. Nevertheless, we feel that the proof is clearer using

the expansion (16) as we have done.
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We want to show that the condition R > ry ¢+ ry is sharp.
It is easier to show this under the slight restriction that
rz/r1 is not too well approximated by elements in E_.

n

Definition. - For N > O, we say that a positive number is

N-well approximated by points in E  if, for every 2 2 1,

there are indices 3j,k such that
(35) ' r-a /o] < —

where ak = qk,n/z

Proposition 5 For any N > 2, the set of numbers N-well

approximates by En has zero measure in (0,=)
Proof. Given p,q, O < p < r € g and v > 0, from (13)

we have

a = a = (2k+1)%/2 + (2y+1)x/74 + O(1/k)

Therefore, if r satisfies (35), for 2 > 1, we have

(36) [re3 - x + ar + B| < C

for some constants A,B,C. Hence

P} - C <Xk<qgj+c,

for some constant c,, Cz > 0. Hence the cardinal of the set

of X satisfying (36) is bounded by (gq-p)j + L, L constant > 0.
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Now, the set of N-well approximated nuambers in [p,q) is

(37) n U {r: p<r<gq, ]r-ak/u,l < 1/23V}
221 §,k>1 J

For L fixed, the Lebesgue measure

| u {r:p<r<q,|r-ak/0j| <185V} «< % Z iﬂ:g%ii& < E%
jek j»1 3
(C3 > 0) since N > 2. Therefore the set (37) has zero measure
and by letting q = p + 1, p € N we obtain the proposition.
It is interesting to compare proposition 5 with [8, Lemma
2.1) where examples of numbers which are not 2-well approximated
by En(n=2) are discussed. It might be that these include all
rationals #$ 1 or all quadratic irrationals ¢ 1, but no such theorem
seems to be known. Also, it is easy to see that, for N < 1,
every positive number is N-well approximated by E,.

Proposition 6. - Let Fq¢ Iy be two positive numbers such

that rz/r1 is not N-well approximated by E, - Denote by

Ak the positive zeros of ;r . There is a positive constant
1

C such that

~ C
(38) v )] >
t2 k N n21
X

Proof., Let us denote ak - ak,n/Z' Recall that Xk = ak/r1 and
that

- Jn 2(rzt)

v, (t) = const. ——l—-—;75

2 (rzt)
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From the asymptotic development (13) we have

Gy ~ % = T+ o(1/k)
Hence, if k is fixed and j, is chosen such that [r
is minimal we have

= - < .
(39) €, lrzxk ajkl x/2 + 0(1/k)

2Ak-aj|

Let us distinguish two cases: € < ¥/4 or not. In the secohd

x

case we have

1 . 1
|°°S(r21k-(n: )l)l = |cos(xe +(2j +1) % + o(;))]
: /2 1
= [sin(e, + o{1/x))| > =+ o(y) > €o > O

for large k. 1In this case the asymptotic development

the estimate

n+i
2

|uz2(xk)| >c, k

for some Cy, > 0 and all large k.

By hypothesis we have that for all j,k

r a C
r—z-;l|>—:(c2>0)
1 XK X

3.21
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Therefore € > ¢:3/km-1 (C3 > 0). Suppose also €, < %/4. By
the mean-value theorem there is a § between a, and rzlk
k
such that
Tnz2' 2! . . Tns2+1 %) (£r. -0, )
(r_A )n/2 2 En/2 2 k 3y
2 k
(Recall Jnlz(ajk) = 0.) Note that 6k = |£—ajk| < e, < w/4,
Again by (12) we have to estimate
L (n+2)x . ¥ (n+1)n {n+2)n
cos( E- T i ) = cos(t6k+(23k+1)2Y 2 - y +o(1/x))
= cos(tﬁk+jk!+o(1/k))
= ¢ cos ék + Oo(1/k).
Then
I“r A 2 ——— (c, > 0).
2 N-1+ 2
k
Since N » 1 the estimate (38) holds in both cases. 0
Proposition 7 let £ be a function in
1 1 .
Lloc(B(o'R))' g € Lloc(B(O,R)), suppg ¢ B(O,r), g radial.
For |xgol <R -r and p ¢ R - r - Ixol we have
[ L] . =
(40) A lfrg,xg) = (xl,l(f,xo) g(+))(y) (|yl=p)
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(The notation indicates that we are convolving in the variable

denoted by a dot).

Proof. Recall that the average Xp(f,xo) can also be computed

by

A (£,x.) = [  f(x_+Ay)da
P70 o(n) ©

where y 1is any point with lyl = p, 0(n) 1is the orthogonal

group and 4A is the normalized Haar measure. Let

$(y) = (X|.|(f,x0)*g('))(y)
we have
¢(y) = In (f f(xo+A(y-x)dA]g(x) dx
R 0(n)
=/ (fnf(xo+Aiy-x))g(x)dx)dA

o(n) R

Set u = Ax then g(x) = g(u) and dx = du Hence
$ly) = | (Inf(xo+Ay—u)g(u)du)dA
Oo{(n) R

= A (£rg,x,). 0

Corollary 8. Let g be radial integrable function of

compact support and a a positive number. Then
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2
Proof. Let ¢ € D(]O,r,[),# $ 0 such that supp¢ © [R-rz,r

Jn_2(°"" Jn_2(°’Y')
~ 2
(41) glx)* 3 (y) = gla) —
“qalx]y 2 (alyl) 2
Proof. Let E € R" be any vector with || = a, then
(42) (geore o ElNy gy o gepyellEln

- ;(0) ei(&ly).

On the other hand

Applying now to (42) Proposition 7 we obtain the desired
formula (41). D

Proposition 9. Let r,, r, be two positive numbers such

that rz/r1 is not N-well approximated by E Let R be any

n.
number, max(r1,r2)<R<r1+rz. Then there is a non zero radial

function f € C.(B(O,R)) which is mean periodic with respect to

ur1 and ut .

3 [

It follows from [16, theorem 2.1 page 247] that ¢ admits a

series development of the form
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Jn_z(lkt)
(43) | ¢(t) = ] a 2
k>1 x N h-2
( kt) 2
A = . . . s . .
where X uk,n/Z/r1 This is the Sturm-Liouville expansion for

a boundary value problem singular at t = 0 and derivative equal
to zero at t = r,. It can be seen by successive integrations of
parts that

(44) |a = o(x P) for every p > 0.

x|

Since ry,/r, is not N-well approximated by En we see that

satisfies the same estimates as a, (Proposition €) Hence the

function
, Ino2 Oy IxD)
(45) f(x) = ] b 2
k n-2
k31 5
(Aklxl)
is a C radial function in Rn, £ * 0, . And, from corollary
8, it follows that f is ut mean-periodic. Furthermore

Jn-Z(inx,)

(b, *£)x) = 1 b u_(A) 2

2 X>1 2 n-2

2
(L 1x])
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which is zero in B(O.R-rz) and therefore the function ¢

restricted to B(O,R) is w_ and u_ mean-periodic. 0O
1 2
The above propositions can be summarized by the following:

Theorem 10. Let r, > 0 and r, > 0 be such that
tz/r1 € En. The necessary and sufficient condition on a open
set R of R" so that the only distribution T € D'(f2) which

can be mean-periodic with respect to both ur ari ur is
1 2

T = 0, is that @ is the reunion of balls of radii strictly
larger than r, + r,.
An amusing corollary of theorem 10 is the following:

Corollary 11 1If rz/r‘ € E,, r,+ ¥, <R and £ € C(B(O,R))

then the conditions

f f(z)dgz = 0 for every 2z, |z| < R -1 (j=1,2),
aa(z,rj) J

imply that f is holomorphic in the disk B(O,R).

5. Generalizations

After the paper was written, we became awvare of the work of
J.D. Smith [17]), in which local versions of certain two-circle
theorems are also proved. Smith's results, which require
are less sharp than Proposition 4; nor does the

R > 2r, + r

1 2

method ¢° proof seem to generalize to the other problems discussed
in [20], e.g. the converse of the mean value property for harmonic
functions. The aim of this section is to show that the methods

used above do generalize.
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Definition. We say that a radial distribution u of

compact support is hyperbolic if:
(i) p is invertible, and

(ii) there is a constant C such that every zero

~

A of u satisfies
[1mx| = c log(2+]|A]).

M_,eso be a (possibly infinite) family of

Theorem 12 VLet u1. 2

radial distributions of compact support, cv(suppuj) = E(O,rj).
Suppose {zecn:uj(z)=0 Vj} = 9, u1 is hyperbolic, and
L}

R - r, > sup rj. Then {f(D (B(O,R):uj*f=0 Vj} = {0}-
j

Proof: Due to the condition on R we can assume

£ ¢ CO(B(O,R)) as done before. The proof that leads to (32)
can be repeated almost verbatim just using for each Xk, zero of

;1, a convenient uj(j>2) with ;j(kk) # 0. We obtain

* = - -
(47) L £(x) 0 for |x]| R - r, syp r,

~ ~ 2 2 -8
where Tk's(t) = u,(t) (¢ -Xk) 1 ¢ s <, My =
multiplicity of Ak as a root of ;1.
On the other hand
(48) (-1)%(8+22)® (1. *£) = u _*f = 0 in B(O,R-r_ )
k k,s 1 ! 17!
therefore, T *f is real analytic, and hence

k"
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(49) T *f = 0 in B(O,R-r1),

as before. It is at this point we have to be more careful to

prove tﬁe correct version of Proposition 2. It will be replaced

by the following:

Lemma 13 Let A = {Ak} = set of distinct zeros of ;1, then
©

A = .Uo Aj' where the Aj are finite and mutually disjoint
j=

sets. There is also a positive integer q such that for any

p, 0 < p < = we can write

(50) o = VvV 4+ u * s ,

where vp, Sp are radial distributions satisfying

(51) supp VDS- 3(0,:1) and

(52) supp Sp c B(O, Max(r1.p)—t1)-

Furthermore,

(53) v,oo= ) Aqvp .
j=0 +J
L
a convergent series in Eo(Rn), each vp j a finite linear
’

. . . . . A )
combination of the distributions Tk,s' X € Aj, 1 < g < m (if
no > 1 then one denotes by Aqvp ° not only a finite linear

’
combination of IS . . A € A but also of
k,s k o
q-1
To'- e ATO,- 'OCO'A To'- o)
o o o
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Once this lemma has been proved, the proof of Theorem 12 is
achieved the gsame way as it was done in Proposition 4 and we note
that the hypotheses imply 2ry; < R.

Proof of Lemma 13 The proof of this lemma proceeds as in

~

Proposition 2 by interpolating the values of op on the variety
of zeros of ;1 (counted with multiplicities). We have to
repeat with due care the procedure used in (13}, ([(15), [18) since
we need the precise statement (51), (52), and (53).

First we note that as in [5, lemma 4] (cf. also [11, p.
50)), the condition of hyperbolicity and the minimum modulus
theérem allow us to construct a family of a Jordan quadrilaterals

T k € Z symmetric with respect to the real axis and enjoying

kl

the following properties:

(54) for some d > 0 the horizontal sides lie on the curves

Imz = ¢t log(d+|Rez]),

and the vertical sides are arcs of circles.

(55) 0 € int Po which is symmetric with respect to the origin
(i.e. if 2z €T then -z €T also).
o o

(56) for k ¥ O, r X is the symmetric of Pk with respect to

the origin.
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(57) for 3j ¢¥ X, int rg N int Tk = P, furthermore, for sonme
positive number a we have that if gz ¢ Tj,
dist(z,T ) > (a+|z]|)™® for any x ¥ 3.
(58) for some positive constant b we have:
diam Fj < b(1+|z|)b
and
‘ b
length rj < b (1+]z]),

for any =z € int Fj, any Jje

(59) there is a constant ¢ > 0 such that for any 3j, and any

z € Pj we have
|;1(z)| > (c+]2z|)7°,

and this inequality is valid even for those 2z such that

dist(z,rj) < 172 (a+|z]|)”?® (the same a as in (57))

(60) A c Uy (int ).

....j--. j
(61) for some 4 > 0: if 3§ > 1, z ¢ rj, then |z| > j/4.
(62) Ao = A int Po, Aj = A (int P, N int r_j). J > 1.,
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For the sake of definiteness we will index the points in A

that Ao = 0, and, for Xk » 1, either Re kk > 0 or Rekk

and Im Ak > 0, and, finally, A-k = -Ak.

Now consider the even entire function

2q

(63) £(t) = t 31(t).

80

for gq a positive integer to be chosen conveniently later on.

We note that if t ¢ int Pj U int Fj then

(64) . (t) = L / OP(S) ds 1 gﬂiil ds
3j 2%i T f(s) s-t 2®i T f(s) s-t

j -3
{where we disregard the second term if 3j = 0) is an even

function which is a linear combination of terms of the form
(¢2-22)"%, for A_ € A, anda 1< s<m  if k> 1,

k ! k j k
1 € 5 € moo+ 2q if . x = 0. Hence ¢j can be defined as a
rational function throughout & and the function f(t) ¢j(t)
an even entire function. We want to show now that q can be

chosen so that

(65) glt) = ) £(¢t) ¢j(t)
j=0

~ !
is in Eo(Rn) and the series converges in the topology of

~ 1 n
EO(R ).

In fact, we have that for |Im t| < log(d+|Ret|) there is

some N > 0 such that
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(66} Igp(t)l < clp) (1+]tH¥
and also

~ N
(67) |u1(t)| < C°(1+|t|) .

Therefore, for some N, > 0 sufficiently large, if

dist(t, int Fj U int r_j) > 1 we have by (66), (59) and (58),
that with respect to an arbitrary point =z € IF?"Fj, which we
can take it to be the point in the positive real axis closest to
the origin,

. |
loster] < n +]z]) 121729 < const. 2

by (61) (just take 2q » N, + 2). Therefore, under the same

1

condition on ¢t we have

r,|imt]|
(68) lece) o 0] < c 572014 ]e)M e ]

Using the condition (58) on the diameter of rj and (67), this
estimate remains valid throughout &, after possibly increasing

o

4
, M. This shows that the v € [ (nn) defined by
1 p o

vp(t) = g(t)

satisfies (51)., It is also clear that the distributions vp 3
’

such that tzq vp 3 - f(t) Qj(t) have the properties required
[
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by (53) (with special care taken if n £ O0). To end the proof
of the lemma we only have to show that g(t) - ;p(t) is
divisibly by ;1(t), the rest is the same as in Proposition 2.

Note that if t € int rj Uint T_j then we have

1 o(s) ds
v.(t) = ~
J 2ni I aT -f(s) s-t
J -)
is holomorphic and, we pick a new residue at s = t yielding
f(t) wj(t) = f(t) ¢j(t) + o(t).
This concludes the proof of Lemma 13 and Theorem 12. g

We give here the local version of Delsarte's theorem for
harmonic functions.

Corollary 14 Let H = {E/n:E/nG(O,ﬂ), ;1(6) = ;'(n)=1}. If

n

R > ry + 1y, r.,/r2 { H,, and u is a continuous function in

B(O,R) satisfying

ui{x) Xr (u,x), for all x, |x] < R - r

1I

and

u(x) = Xr (u,x), for all x, |x| ¢ R - r

’
2 2

then u is harmonic in B(O,R).

Proof: From the asymptotic development of the Bessel functions

and the formula (10), it follows that the radial distributions u
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Remark As mentioned in [20], Delsarte proved this theorem in R .

defined by

V.(t) = t-z(:\:gﬂt) - (3. (t)-1)/t2
j rj tj

are hyperbolic. The hypothesis on t.'/r2 guarantees these two
entire functions have no common ZzZeros. Theorem 13 shows now that
the distribution Au 1is zero in B(O,R).

n
He also showed that H_ is finite and H3 = {1}. Hence, at least
for dimension 3, any pair of distinct positive value £,. I,
would work in the above corollary.

The several other results in [20] can now be carried over to
the local case without difficulty. It remains as an open
question for the moment the elimination of the invertibility
condition on Uy which could probably be done following the
Euclidean summation method of [6]. More intgresting,in our view,
is to try to extend this theorem to non-compact symmetric spaces
of rank 1 or even to the Euclidean group thus obtaining a local
version of the Pompeiu problem considered in [9]).

As an example of this let us mention the following

corollary of Theorem 13.
1

Corollary 15 Let R > Yn a, if £ € Li,c(B(0/R)) has zero

integral over any n-cube of side a contained in B(O,R), then

f = 0 a¢Co

Proof Pollowing the ideas from [9]) we see we can consider all

radial distributiongs ¥ whose Pourier tranforms are of the fornm
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(69) /

XQ(kC)T(kC) dk = u(g)
o(n)

where Q is the cube [-a/2,a/2]" and T is a distribution of
compact support in the ball B(0,€e), € + /n a < R. Then, for any
such Wy, ecv(Suppu) B(O,r), and f will satisfy the

equations:

u *f

"
[«

in B(O,R-I’).

Bince this set of distributions generates the same closed ideal
in E'(Rn) "as those are considered in [9, p. 602), then their
Fourier tranforms have no common zeros [9, section 9]. It only
remains to find a distribution that plays the role of u in

1

Theorem 13. The easiest one is obtained when

a2n X
.

3x2.. oaxz
1 n

An easy computation shows that in this case, for

2n
W, = average over 0O(u) of S X., We have
1 3 2 70
X, eeadXx
1 n
~ _ (n/2)+1 -
(70) u,(t) = const. t J3n_2(/n at/2)

2

which is clearly hyperbolic. (For n = 2, this can be obtained

from Soniie second finite integral (19, p.376]).)
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1. Introduction.

The prototype of the Pompelu transform and of the problems we will
consider here is the Two-Disks problem we discuss presently. Let E be the
collection of positive quotients of zeros of the Bessel function Jl' This
countable set is precisely the exceptional set for the following theorem

(proved independently in [12] and [21]).

Theorem. Let ry.r, > 0, rl/r2 € E. Then a continuous function in the plane
is identically zero if and only if all its averages over any disk of radius

either rl or r2 vanish.

If we let Xy %y be the characteristic functions of the disks B(O.rl).

B(O,rz) we are saying that the map

(1.1) P : fr——)(xlnf',xzuf)

is injective. In (7], [8] it was shown that a stronger arithmettcal conditton
was necessary and sufficient for the existence (and the explicit construction)

of two distributions vV, of compact support such that

(1.2) vl-(xIOf)'*vat(xznf) = f.

Because vl,u2 might be distributions (the map P 1s smoothing), it is morc
natural to consider P in the Frechet space € = 8(R2) of C” functions.

Then we have that r. ./r, ¢ E if and only if

172
P:g—)SZ

is injective. The existence of Vv, solving (1.2) is equivalent to Im P

being closed, hence P is right invertible. One can in this case also show

that

(1.3) In P = {(g.h) € (8(R®))? : Heg = Hyoh)




and

-1’

P Im Pr—¢&

(g.h) v eg+ v eh.

The exact arithmetical condition is Jjust the existence of a constant
A > 0 such that

1_-A
(1.4) lrl/rz-ﬁ/nl 2 ol

for any pair £,m > 0, JI(E) = Jl(n) = 0.

Since (1.2) is an explicit deconvolution formula, L. Zalcman asked in
[20) whether some sort of explicit reconstruction formula would also exist
under the sole condition’ rllr2 ¢ E. The theorem below answers this question
in the affirmative. Naturally coupled to this question Is the following local
problem. Suppbse we know the averages of f on disks of radit r and o
only when those disks lie in some fixed disk B(0,R), could these data deter-
mine f in B(O,R)? A priori, formula (1.2), if valid, would only determine
f in B(O,R’) for some convenient R’ < R. This is just a consequence of
the fact that (1.2) is given by convolutions, and Vv, do not have

support at the origin. This is the nature of what was called elsewhere the

<R, r,/r,¢6E,

local Pompeiu problem. It is shown in [2] that {f r_+r /T

1 2
then f 1is determined in the whole disk B(0O,R) by those local averages. We
will show here that one has even a local reconstruction formula.

These local theorems are also valid for other sets instead of disks, when
one takes all rigid motions. The injectivity was shown in {3]. We give here
a method to construct a local inverse in this more general situation.

Finally, we would like to mention that even for the injectivity question

in Rz. it is very hard to see when one can work just with translations of a




finite famlly of sets. The antecedent of several such results is the Three-
Squares Theorem [S] where it is shown that if the averages of a continuous
function f 1in the plane vanish on every square of sides either rl.rz or

r (with sides parallel to the axes), then f {s identically zero if and

3

only if F:T, Ty are O-linearly independent. In [8], [9], explicit decon-

volution formulas were found for this case under extra arithmetical assump-

tions on the triple Fy P ly The local version of the Three-Squares Theorem

requires that we place ourselves in a square of side R. 1In [4] it is shown

that if R > r1-+r2-+r3. then the uniqueness still holds. Its proof is

akin to the methods used in this paper.

The motivation for this work lies in trying to find an algorithmic decon-
volution approach (with due care for error bouAds and noise behavior) in a
situation where part of the scene is obstructed from our view but the object
we are looking for lies very close to this obstruction. 1In the case of the
Radon transform this is sometimes called the Hole problem or the Bagel problem
(15]. It is interesting to note that these two problems are related, since

one way to find an inversion formula is to use Cormack-Quinto’'s Spherical

Radon Transform and its explicit inverse.

2. Preliminaries.

We recall some notation and basic properties of the Pompeiu transform.

1,....EN be a collection of compact sets in R" of positive measure

and let M(n) be the group of Euclidean motions in Rn, then the (global)

Let E

Pompeiu transform (assoclated to El""'EN) is the map [10]

(2.1) P: C(R)—c(M(n)N




given by

(2.2) (Pf)(g) = [J fdx,...,j fdx].

gE1 g8Ey

Given an open set U S R” we can define open sets GJ € M(n) by

(2.3) GJ = {g € M(n) : g[-:‘j < U

(these sets could be empty). We define the local Pompelu transform
N

(2.4) P: C(U)—> e C(G))
=1

defined exactly by the same formula (2.2). The family El""'EN is said to
have the Pompeiu property (respectively, the locai Pompeliu property with
respect to U) whenever the map (2.1) (respectively (2.4)) is injective. The
most interesting case is the case of a single set with relativeiy nice

boundary. One can prove the following theorem.

Theorem 1 [1], [6]. Let R be an open bounded set in R", E = @, EC

connected and 8E Lipschitz. Then E (or ) has the Pompeiu property if

and only if there is no positive eigenvalue for the overdetermined Neumann

problem
An+au =0 in 0
(N) g%= , u=1 1in Q.

As a corollary, one obtains two classes of examples:

(1) A single ball never has the Pompeiu property;

(2) A set 0N satisfying the hypotheses of Theorem 1 whose boundary is
not a real analytic hypersurface has the Pompelu property.

Examples of sets having the Pompelu property and also having real analy-

tic boundary exist, for instance, any ellipsoid which is not a ball. Since a
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single ball does not have the Pompelu property, the following theoream gives

the best possible answer.

Theorem 2 {12]), (21]. Let Zn ={€Mm: €>0, n>0, Jn/z(ﬁ) = Jn/z(") = 0}.

A pair of balls B(O,rl). B(O.rz) has the Pompelu property if and only if

rl/r2 ¢ Zn'

To consider the local Pompeiu property it is clear we have to start with
a family that satisfies the global Pompelu property. We restrict ourselves to
open sets U that can be covered by balls of a fixed radius R. In this case
we might as well suppose that U 1is the ball B(O,R). In this setting it is

easy to state the local version of Theorem 2.

Theorem 3 [2]. Let re Ty > 0, rl/r2 ¢ 2n and R > ry*ry Then the pair
B(O,rl),B(O.rz) has the local Pompeiu property with respect to the ball
B(O,R). Under the additional restriction that rl/r2 Is badly approximated by
elements of Zn' the condition R > ryt r, is also necessary.

It is quite possible that R > rl‘+r2 is always a necessary conditlion
in Theorem 3. When considering a single set E having the global Pompeiu
property, in order to'decide whether E has the local Pompeiu property with
respect to B(O,R), it is natural to try to measure R against a value r
such that E ¢ §(x0.r) for some Xy The condition that replaces rl*-rz <
R is 2r < R. We are compelled to introduce an extra technical condition due
to the fact that we know nothing about 8E. This condition, which we will
explain below, is called hyperbolicity. There are a number of simple condi-
tions that imply it (see {3]), for instance,

(1) Near an extreme point X X, € En aB(xo,r). E coincides with a
polyhedral angle with vertex Xy The fact that the walls or edges are
straight plays no role. For instance, E 1is a cube in R".

(2) There is an extreme point X0 Xy € En aB(xo.r). such that Xy is
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a point of strict convexity for 8E and 8E 1is of class C3 near X,

(3) In Rz. near a point X)» Xy € En aa(xo.r). 8E 1is a Jordan

1
curve, sufficiently smooth.
Theorem 4 [3]. Assume E S §(x0.r) has a hyperbolic point
X € En aB(xo.r). Assume further that E has the global Pompeiu property
and 2r < R. Then E has the local Pompeiu property with respect to B(0,R).
We remark that the conditions r1-0r2 < R in Theorem 3 and the corres-
ponding 2r < R in Theorem 4 mean that the open sets GJ (respectively g)
of M(n) are not to small. On the other hand, they impose no restriction,
when U 1is the complement of a closed convex set K. This is akin to say
that the Pompeiu transform possesses the Hole property, as is the case for the
Radon transform (in that case K must be compact).
The proofs of Theorems 1 and 4 depend on the introduction of a countable
family of radial distributions associated to the set E. For that purpose we
need to introduce the concept of the radialized version of a distribution (or

circular symmetrization) with respect to a point %o Namely, let T e D'(R")

then Rx T =®RT is defined by
0

N -
(2.5) <RxoT,¢{ = <T(x),[ Ylk{x x0)+x0)dk>,
S0(n)

where y € D(Rn), dk is the Haar measure on SO(n). Incase T = Xg: E a

compact set in Rn, then *x T 1is a function of compact support with values
0

in [0,1] which is a radial function with respect to xo. Rx T(x) =
o

v(lx-xo!).

(2.6) p(t) = o(E n aB(xO,t)).

where o 1Is the normalized surface area. We consider ¢ as a radial Borel

function in Rn. of compact support, and therefore its Fourier transform %y




=
-

is an entire function in c" in the Paley-Wiener class, which is radial,

f.e., If we let

{(2.7) ®(g) = ¥¢(£,0,...,0)

then @ 1is an entire function in €, even, satisfying the inequality
(2.8) i®(C)| <€ A explr|Im Zl),

whenever FE ¢ E(xo,r). In fact, @ 1is the Fourier-Bessel transform of the

radial function ¢

_ n/2 n-1_-
() = (2n) J p(t) J(n—2)/2(ct)t dt,
0

where jl(z) = Jc(z)/zt. Jz being the Bessel function of order ¢ We also
denote & = 9. Conversely, ¢ determines %¢ by

(2.10) Fo(C,. ... E) = & C?t..#(i).

The smallest r which appears in (2.8) determines the smallest disk of center

- » [
Xg such that E ¢ B(xo,r). We call exterior radius of E, r =r (E), the
minimum value of r, with respect to all xo, such that this inclusion
holds.

. n . .
For fixed x. and any a € N, we can construct a corresponding entire

0

function of one complex variable °a by

(2.11) ® (2) := (R, (D%x)) (),
a X E
0
o a'“'
where D = e It is convenient to introduce the distributions M, =
ax
ﬂx DazE, which are radial with respect to Xy These definitions are
0

Justified by the following.

Lemma 4 [12). E has the global Pompeiu property if and only if the functions




0¢. a € N", have no common zeros.

An even entire function & of a complex variable is said to be hyper-

bolic if the following three conditions are satisfied.

(i) For some constant A > 0, it satisfles the estimate

10(2)1 < Al1e1zD) Mexp(AlIn €1).

{11) For some constant a > 0 and any real value ¢

max{ |®(E+n)| : Inl < a log(2+]1€1))} 2 (a+l€]) 2.
(1ii) For some constant ¢ > 0O we have that
() =0 = |Im gl < c log(2+1¢1).

The first condition is simply that & € ¥(&'(R)). The second is usually

called invertibility, it means that the principal ideal ®%(6°(R)} 1is closed.

one says that all the zeros of ¢ are almost real.

In [3], it is shown that a number of natural conditions on E imply that
¢0, the radialized function of X is hyperbolic.
The idea of Lemma 4, and a fortiori Theorems 1 and 4, is that everything

is reduced to the study of the radial case, as follows. Let us fix XO'

which we take to be the origin for simplicity. Then the condition

J fdx =0 ¥V g e M(n) (or V g € G)
gE

can be rewritten as an infinite system of convolution equations

(2.12) Y p € SO(n): 1pE-f(x) =0 VxeR" (or Ix} < R-r).

The proof of the injectivity of the (local) Pompeiu transform is based on

the principle that if there is a non-zero solution of (2.12), we can assume it

l 1t coincides with the property that @HX(C) n F(E (R)) = ®F(&' (R)). The third




to be C° and show there must be a non-zero radial c® function g in g"

(respectively in B(O,R)) solution of the denumerable system of convolution

equations

(2.13) VaeN ua-g(x) =0 VxeR" (or Ixl <R-r),

where the M, are the distributions defined in (2.11). In particular, they
involve derivatives (see [12], [3]) for the detalls).

In order to find an inversion formula for the local Pompclu transform we
must make this principle a bit more precise. This depends on the following

lemma.

Lemma 5. lLet E € B(O.r) and U = B(O,R), R> 2r. Then for every x such

that Ix| < R-r, ae€ Nn. and any f € E(B(O,R)) we have

-]
(2.14) nof(x) = I <a‘“’(y).P(f)[I‘g ";“V“mk,
SO(n)

where M(n) is considered as the group of (n+1}x(n+1) matrices of thc form

Ilg Y. kesom), xeR' and R’ is identified to the affine subspace
{xn+1 =1} of Rn+l.

Proof. The identity (2.14) 1is an easy computation and the only thing to
-k-1 x-k
verify is that for |Ix| < R-r, the image of E by n 0 ) y" is con-

tained in B(0O,R) (recall that supp 6(a)(y) = {0}). This is evident since

-1

(-k ")E € B(0,r). Hence, translation by x keeps it inside B(O,R).

Given a compact set E, let ET = {x+71 : x € E} the translate of E

by TER? Consider the functions

wt(t) 1= (WXOET) (t).

It is easy to see they are real analytic with respect to the parameter =t. In




L

analogy with Lemma 4 we have

Lemma 4. E has the global Pompelu property if and only if there is an open
set 9 € R® such that the family of functions (wt)teﬂ has no common zero.

Another minor technical lemma will be useful to us.

Lemma 6. Let P be a homogeneous harmonic polynomial of degree k and o

P
the normalized measure on the sphere 8B(0,p) (0 < p), considered as a
radial distribution in Rn. Then, with x| = r, we have
k 2-n
- (-1 [ a 2_, ,2.k-1
(2.15) P(x)ap(r) k l(k 0 Qn P[g;][(p 1x17) 18(0'9)(x)],

where Qn = 2nn/2/r(n/2) is the surface of the unit sphere in R

Proof. If we consider the Fourier transform of P(x)op(r). we have
F(P(x)o (r)) (L) = P[i—a—.. ]cr (<)
p 6C1 aC

_ .k (n-2)/2 2 2
=iz2 r{s )P[BC]J(n—2)/2(p C1+...+(n)
where j (z) = J (z)z¥. We can now apply an identity from [16, p. 126]) to

obtain

k

d 1.
P[éf]J(n—Z)/Z

u=V(?+...+§i
_ i k 2k . 2 2
= (-1)p P(C)J(n/2)4k-](p c1+...*§n)

On the other hand, the function j(n/2)+k—1(p C?*...*Ci) is the Fourier

transform of a rather simple function. Namely, if t = |},




n/e
= i%%%577§ (pz rz)k 1 (n_z)/z(rt)r"/zdr

-0

1
n/2 p(n/2)*2k 1 I n 2
0

2)k-1 {(pts)s ds

(1-s°)"" %)

X N (= VA

t (n-2)/2

n/2. k-1 n+2k-2
(2n) 2 (k-1)!p J(n/z)*k-l(pt)'

as can be seen from [14, p. 688, formula 6.567.1). Hence if we let

_ 2 ,.,2.k"1
T(x) = Tp,k(X) = (p =IxI7) xB(O,p)(X)'

we have
k.k rin/2) 2 n
F(P(x)o (r))(g) = (-1)7i P(C)T(C)
P 22K (k- Dt
2-n
= -k r;ﬁgzip ?(P[a ]T(r))(c)
2 (k-1
Therefore
2-n
(-1) 3
P(x)o (r) = & P[——]T (r),
e B 2K T k-1ye W) PK
which is the formula (2.15). 0

In what follows we will need to determine the radial distribution in Rn,

R T that has as Fourier-Bessel transform

(2.16) B = 5 o)y (PL)/(E5-a2),

where a 1is a zero of the numerator. 1t is easy to find the even function ¢
in R whose Fourier transform coincides with ﬁ. Therefore, what we ncecd is
to have a systematic way of obtaining u from ¢. In fact, this type of

relation underlies all the proofs about the local properties of the Pompeiu




transfora.
We have the following setup. Let GB(Rn) be the space of radinl distri-

butions in R" and (E'(R)n)o the space of entire functions in the Paley-

Wiener class which are radial when restricted to R". Then, if 9n denotes

the Fourier transform in Rn. Sﬁn the Fourlier-Bessel transform in Rn, we
have
n ?n n,, "

(2.17) €' (R) — > (E'(R))

o z o

Bn 938 S|z
&' (R) = 5> (6 (R))
o] 3 o
1

where SF(t) = F(t,0, ,0) (= F(C) for any C( € ¢” such that

(2-+... *CZ = t}, S_lf(C) = f( c2+...+C2). The isomorphism B = B is

1 n 1 n n
defined by the commutative diagram and it is called a transmutation operator.
We remark that B is an isomorphism of convolution algebras, as such il has

been originally studied by Bochner, Leray, Levitan [11], [17].

It is easier to fiﬁd first B-] explicitly. Namely, let p be a smooth

radial function of compact support in Rn, then if r = Vx?+...+xi
[vo] ao oo
o _ —itx,
Sjn(t) = J e dx]J ...J p(r)dxz...dxn.
et + ¢4 -0 et + ]

Comparing with the above diagram we see immediately that

@ o

-1
w(xl) = B u(xl) = J ...J u(r)dxz...dxn

- -

(n 1)/2
= Ju(v’x *yz)yn 2 dy
0

(———)




(n-1)72 (*
2 5 I u(s)s(sz-xf)(n-a)/zds.
r&z2)
2 lel

We Introduce a change of variable, so that

I u(vg)(sz-xf)‘“‘3”2ds.
2

1
Let w(xl) = 0(x§). v = x?. then

(n-1)/2

- 4
o(v) = I J u(vs) (s-v)(P31724
r¢ol)
n v

To invert this expression, we distinguish two cases. First, the case n is

odd, n=28+1, £ 2 1. Then

Hence

1 1 d t
(2.18) u(s) = (le+1¢)(5) = —z[{'é; a;] ¢] >
n X=s

The case of n =2¢ ¢ 21, is a bit harder. First we find, using Laplace
transforms, that

[ 9]
ulvs) = lz[- g;] U (t—v)-1/2¢(t)dtJ .
n ves

v

Returning to the original function ¢ we get

L
. d 2 -1/
(2.19) p(s) = (thp)(s) = ii{'%Q ai] [[ (= _x2) ! 2W(I)Tdr]

X=s

We can now apply these formulas to find the distributions pu = uq K o
n, k., a,
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defined by (2.16).

Let v = E%EO»R. /¢, := 2”¢ir(v~%). then

-p

Hence, if Jv(pa) = 0, we rewrite

Ju(pt) 1 Ju(pt)-Jv(pt)
2 2  2a t-a t+a |’
t -a
Ju(pt) = c -2v ‘e-xts_e-las( 2_52)11-(1,’2)d
-« P t-« P S»
-p
and
Jv(pt) = c -2v e-xts_elas( 2_s2)v—(1/2)ds
T+ P tvaF .
-P
Therefore
. =-2v
Jv(pt) - cvp -its (s)d
5 2 a e ¥y plslds
t -a
P
where ¢ v(S) is the even function which, for s 2 0, is given by
(2.20) wa v(S) = ZJpsin a(s~u)(p2-u2)v-(1/2)du.

S

To find u we apply the transmutation operator Bn to the function

c p~2u
v

Yav T T2a wa.v
For instance, for n = 2,
(2.21)

1
_ 1 2_2.~1/72 _e2.k-(172)
2 k0" = Xn2 x[O.p](r)Jp(t r) [J (1-£7) cos alr-pg)dg|dr.
r T/p




—
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Finally, we recall a simple property of the Bessel functlions.

Lemma 7. Let ai.az,a3 >0 and m € 2‘. Let

e(z) = Jn/z(aIZ)Jn/z(azz)J(n/2)+m-1(a32)'

Then there are constants Lm' Am > 0, such that for any integer (2 Lm

there exists Py € 1¢.£+41] so chosen that if either |[z]| = Py OF 1Im 2| 21
then
-(1/2)(3n+]+2m)e(a,+a2+ag)llm z|

(2.22) le(z)| 2 Amlzl

Here n 2 2 is considered fixed throughout. If we are given & > O in such

a way that a._ € [6,6-1] then the constants A ,L  can be made to depend
J m'm

only on & and m. They actually become explicit in the proof.
Proof. The function 6 is an even entire function, therefore to prove (2.22)
we can assume we have Re z 2 0. In this case we can use the following asymp-

totic development of the Bessel function J“ {v 21) (see [13])

1Im 2| 2 2
2 n ne J4v -1 nl4v -1}
- < - <3/ = D oewp 2 21
(2.23) IJu(z) o cos(z 4(2"*1))| £33V 5 |2'3/2 [ 8 ekp[ 8zl ]]'

Clearly, when |zl 2 g|402-ll we obtain

|Im z|
13 (2) -V cosiz-Tavein ) < 32 Va2 e
v nz 4 8 2 |2|3/2

On the other hand, if V = {(2&1)n/2 : € e Z}, d(z,V) = min{1,dist(z,V}},

then the cosine satisfies the Lojasiewicz inequality

{cos z| 2 ~l-—d(z,V)e“m zl
ne

Considering the expression (2.23) we see that we need to know how many zeros

does the product cos(alz-§(n41))cos(a22-g(n*}))cos(a3z-g(n*Zm-l)) has




il

0148548,

- such zeros, we can

in an interval [, 8+1]; as we have at most

find a value P, € }J¢,&+11 such that the distance from Py to any of these

1 n
zeros is at Jeast 5 5757753753' Hence, on the circle |z] = pc. we have
n min{1,a,} a;{Im z|
Icos(alz Z(n*l))l 2 Selnea, vag+al) e _

On the other hand, if |IImz] 21, then |if aJ = min{l,aJ)

n a; aylIm 2|
- - 2 — e
|COS(aIZ 4(n*l)” = ,

that is, the previous inequality is valid both for |z} = pe and for |Im 2|

2 1. Therefore, on every such circle as well as on |Im 2{ 2 1 we have that

a,llm Z’
z)| 2 e 1
2eV§i(n+a]+a2+a3)lalzl

1,22 72

1

. 3 ezn(n+a,+a2+a3)n2
if we assume |z| 2 = .

2 The same kind of estimates hold for
4 agay

the other two factors in 6. Let

3 2 2, . 2
(2.24) L = 7€ n(n+ay+as+as) (n+2m)“/min (al.az.aj).
then for ¢ 2 Lm‘ Izl = Py O for Ilmzi{ 21, |z| 2 Lm we have
-(n+1)/2_-(n+1)/2_~((n+1)/2)-m {a;+az+ay)|Im 2|
a a a. a a_e
(2.25) le(z)] 2 2 3 123
’ - 1/72(3n+2m+1)

[2e¢§i(n4a1*a2+a3)]3|2|

Rerarks. 1) The sequences Py depends bolh on the a‘J and on m.

2) We do not really use the full strength of the estimate (2.23). It
would be enough to use Weber's estimates [19, § 7.33].

We conclude this preliminary section with upper bounds on the Bessel
functions, which depend on the fact that the order v is either an integer or

half an integer. From [19, §2.2 and §3.32) we have for Re z > 0 and q an




integer 20
(u
1
Jq(z) == cos{q6-z sin 6)do
Y0
n

14
z J elzcos qu(cos 6) sin 6 de,
0

2nJ

= (-9
Jge(1s2) (@) = 1) [

where Pq is the Legendre polynomial of degree q. From [14, 8.917) we know

that
{P (cos €)1 < 1.
q
Therefore
Hm z| 2, ,172_l1Im 2|
(2.26) qu(Z)l <e , qu4(1/2)(Z)| < Vfglzl e ,
which has the advantage of being a global inequality, but loses lzll/2 and

izl respectively, from the asymptotic expansions. This is a minor loss for

us, and we will use this estimate below.

3. Reconstruction of a function in the case of two disks.

Let 2n ={€/m: £€>0, >0, J /

() = Jn Z(n) = 0}. It is known that

n/2

if T >0, r, >0 and r,/r_ ¢ Zn' then the Pompe-iu transform

2 12

P : fh—a(zB( )

of X of
O,r]) B(O.rz)

is injective. Moreover, this condition on r]/r2 is also necessary for the

injectivity [12). In case rl/r2 is badly approximated by elements of 2
n

that is, in case there are censtants ¢ > 0, N> 0 such that




1

(3.1) , 128 £
2 7 (em)

one can construct explicitly distributions Vye Y5 with supp vy < ﬁ(O.rZ).
supp v, < ﬁ(o,rl). such that (8]
(3.2) é.

7‘ia(o,rl)"’l * 7‘B(o.rz)"’z =

Therefore, under the arithmetic assumption (3.1) any function (or distribu-
tion) f in R" can be reconstructed from the knowledge of its Pompeiju

transform Pf = ). This process (3.2) is known as

(18(0.r‘,)'f'zB(O.rz).f
deconvolution. 1In case we only have a function f defined in a ball B{(O,R},

with R > r_ +r., even if we use the deconvolvers v, ,v

1 5 y'Vor We will only be

able to reconstruct f in B(O,R-(r1+r2)). For this reason, we will give a
different kind of explicit inversion process for tnis local problem. Il turns
out that the arithmetic condition {3.1) will not be necessary, only rl/r2 ¢
Zn' In particular, this answers on the affirmative a question posed by
2alcman [21] for the case R = w. In fact, our procedure is basically a
method to approximate f with an estimate of the error. 1In this sense, we
are dealing with several possible procedures that depend on the way we want to
represent a given unknown signal f. For the sake of concreteness we wijll
describe this in detail when we represent f in terms of the Fourier expan-
sion in B(0O,R) by spherical harmonics. 1In a forthcorming paper we will
explain the modifications necessary if one wants to use wavelels or the Radon
transform on spheres.

To begin, let us point out that if f is not c® in B(O,R), then we
can first consider f-wc, supp ¢, € B(0,e), O <e«l, and slhce Pf |is
given by convolutions we will have P(f'¢c) = Pf-¢c. The first component of

Pf, of, 1is known in B(O.R—r]), hence that of P(f-¢C),

IB(O.rg)




zB(O.r,)'f"’c' will be known in B(O.R-c-rj). Similarly for the second

component. Hence, replacing R by R-c, and then taking ¢ so small that

R-e >r_ +r we can assume f 1is C .

1 2
Given a function f € C (B(O,R)), we have a Fourler expansion of the

form

- ]
(3.3) f(x) = :E: :E:am'k(r)sm'k(w)], x=rw wes" !

m=0*% k

where (Sm k)k is an orthonormal basis (with respect to the normalized

measure of the unit sphere) of the spherical harmonics of degree m. That is,
rmSm k(w) = Hm {x)} is a harmonic homogeneous polynomial of degrec m. The

k
dimension of the vector space Span((Sm k}k) is O(mn_z) [18]. The

coefficients

am'k(r) = J f(rw)Sm'k(w)dol(w)
n-1
S
satisfy an inequality of the form

N
r

< C —_—
'am,k(r)l - (N o

for any N > 0. Another way to write down this formula is as the action of

the distribution r_mcr(x) on a smooth function

(3.4) a (r) = <r "o (x), H.  (x)f(x)>=<r "H__(x)o_(x),f(x)>
m, k r m, k m, k r
m 2-n-m
S Gt D SRS FLJT CIx1), £(x)>
2m_1(m—1)'Q m,k{dx} r,m
“'n
where, as given by Lemma 6,
_ 2 _ 2,m-1
Tr'm(lxll = {r Ix1™) xB(O,r)(X)'
4.19




the idea now will be to write Tr n as

Tr.n * 8I'IB(O.ri) ’32.18(0.r2)'

with control on the supports of g, and g, In this way we reduce the
problem to a decomposition of radial functlions. We fix some notatlon first.

Choose a strictly increasing sequence of positive numbers "i with limit

R

e 1, and a corresponding lncreasing scquence of radl}
1¥r2

Rk = (r1+r2)(1*ck). k21, RO = 0.

We want to decompose the radial distribution Tr n’ and th: decomposi-

tion will depend on the value k such that r € le—l'Rk" We -ecall Lhat

the Fourier-Bessel transform of Tr m is given by

= - n/2,m-1 n+2m-2 .
T m(t) = (2n) 7727 "(m-1)!r J(n/2)+m—1r(t)'

*

Proposition 8. Let rl,r2 >0, rl/r2 ¢ Zn. rl'+r2 < R, (tk) fixed as above.

For every r,m with Rk—l £r«< Rk there are two sequences of -~adial dis-

tributions MgV, whose Fourier-Bessel transforms satisfy

(3.5) ,j(n/2)+m-1(r2) -(Jn/z(rlz)ue(z) +Jn/2(r22)vl(z))l

¢’ -(n/2)-m+(372),_,-(n/2)-m+(13/2) R, lIm z]

< i—r hzl e

for ¢ 2 cm

-~ - / - / - 2]
(3.8) I#C(Z)l < o'p {n/2)-m+(3 2)”2” m+2€(rh+B,)Ilm z|
(3.7) ';t(z)l < C”r-(n/Z)—m*(3/2)"Z"~m*2e(rl+Bk)Ilm zl‘

In this statement, we use the notation |z = max{1,}::|}, c.c’ being

strictly positive constants depending only on rl,rz.R,c1 and n, while c¢”




depends also on ¢ and m. The quantity ﬁk denotes ck(rlorz).

Proof. We are going to apply Lemma 7 with ., =r.8,=r, a, = Bk' The

2 2
corresponding value Lln < % € n;u4R)(n+§m) < cmz/ci. We let q be an even

ck(rlorz)

integer to be fixed later on. To simplify the notation w2 denote f(2) =

J(n/Z)*m-l(PZ)‘
The idea of the proof is to profit from the simple fact
£(z) if |zl <p
1 f(c)’ . {
(3.8) 2ni [ -z ¢ = {0 if tzl »> P,
Igl=p, '

The usual method of interpolation theory consists in rewriting (3.8) as

follows
q _,4q
(3.9) flz) = = Q) (LTe(g)-z70(z)),,
2ni §q9(§) c_z
1<l=p,
+ 5L 2% (z) @A
2eni CqQ(C) g~z ?
|C|=p[
and
q _.9q
(3.10)  =— £(g)  (gf8(g)-270(2))
2ni CqG(C) C-z
1Z1=p,
2%(2) f£(g) dC
T T Tomi == for [zl > P,
ICI;pc

We define an even entire function HC by

Z.

A ry_.9

(3.11) Hiz) = L £(g)  (glo(g)-z"e(2))
¢ e (¢) ¢z

lcl=pc

that is, the interpolation of f on the 2eros of z%1(z). Note that Ht is




even independently of the parity of th; integer q; we took q even to
simplify the computations below, but this is not necessary.

We are going to show the family (}Q)CZL- is a bounded family in é’(R).
For that purpose we recall the upper bounds for f and 0 that we obtain

from (2.26),

r -((n-3)72)-m, _ ~((n-3)/2)-m rllm z|
r e

(3.12) If(z)| < e Kzl

—(n-l)/ZB-((n-3)/2)—m

~(3(n-1172)-m+1 Ry |1m z|
K e .

) izl

Ry
(3.13) {e6(z)| < e (rlr2

We note that for n even these two estimates are too btg by a power "2"1/2

and HzH3/2 respectively. Also the constants e’ and uRk carn. be replaced

by eR. Choose l 2 sz/vi 2 Lm 2 2, then for || = P, we hav:

1e(Q)| 2 CIB;((n—l)/2)-mp;(1/2)(3n+2m+1)eRkl1m Cl,

where y =_c1(r1.r2.R) is given by

-(n+1)/2
(rlrz)

. 3
mln(l.rl,rz,Bk}
1 (2evZn(n+R))°>

For |{z| » P, Wwe can use (3.10) to estimate H(' We let g=n+3 if n

is odd, g = n+4 if n is ev-n, then

r((n-1)/2)+m

e By ~((n-3)/2)-m _-qg+n+3 lquIO(w)l
lHt(Z)l < 2 r Py - |Zf—p1_~
~(n/2)-
¢ e (m/2)em 12172 N2
T e 'Z'-pe !
where
2R, r.g (2eV§§(u+R))3
c, £ 127k <cl(r,,r,R) = ¢!
2 - 3 AR B 2

mxn(l,rl,rz.ﬁl)




(we have taken into account here the fact that the upper estimate for 6 can

be improved by lzllal2 when n = even). For |z| < Py, we use (3.9), so that

-(n/2)-m+(1172) Ry llm 2|
-((n-3)72)-m Kzl e«
(3.14) IHt(z)l < If(z)l*-czr p"IZI

These estimates are fine when |z| € 8-1 or |z 2 8+1, since then

Ilzl-pll 2 1. In this case we have

, —-{(n-3)72)-m
r

-(n/2)-m+(11/2) RylIm z|
2 e .

(3.15) lHl(z)I < 2c iz

In the remaining annulus, ¢-1 < |z] € ¢+1, we can use the maximum prin-

ciple to obtain

w =((n-3)/2)-m
r

-(n/2)-m+(11/2) Ry lzl
5 e .

(3.16) IHt(z)I <c izl

”

> , and it is

is not substantially different from c

independent of m since if m+g > é—l [%]‘n/Z)m-(n/z)

8+1)(n/2)+n-(11/2)
1 =

values of m are handled by the same reasoning. We conclude that (H“

The new constant ¢

A DN~

independent of m since ¢ 2 cmz/cz. The other

¢ 1

3'
¢ is

bounded in Exp (€) = {entire functions of exponential type}. To conclude

that (Hl)l is bounded in &' (R) we need estimates on the real axis. From

{3.14) we know that if x € R\[{1,82] then
-((n-3)/72)-m _ -(n/2)-m+(11/2)
r L .

(3.17) IHl(X)l < 2c2

As it was done in [2] we write

HQ(X) = HC(X)'-Ht+3(X) +}&+3(x).

hence, by (3.17), the last term satisfies the correct inequality when x €

{£-1,8+2), and we only need to estimate the difference ( J(x). Let

HyHys

r, be thg’Jordan curve which is the boundary of the region {Re z 2 0,

¢




,

Py s lz| s Pre3’ 1Im 2| $ 1} and rt its symmetric with respect to the

imaginary axis. They are chosen with a convenient cholce of orlentation so

that
Q.9
(3.18)  H(x)-Hy, (x) = 50 J o] frete vle)xoix) )y,
. ¢%e(g)(g-x)
4
For L e€eTl, and x € [&1,%2]), we have

1/

q _,4
Ra:IC k. - 1C PR |g-;(wq6(w))|
¢-x lw-x1}<5

< céeBR(r - )-(n~1)/28'-(((n—3)/2)-m’xl

-(n/2)-m+(11/2)
12 '

by the same reasoning that led to (3.16) the constant cé is independent of

m. For (e FE and x € [{-1,82], we can use

1% (c)-x%e(x) 1 < (¢ i+ IxTe(x)

-(n/2)-m+(11/2)
3 12 ;

We conclude that for x € [&1,8+2] we have

|H£(X)| < cér'(n-fl)/2—m"x"—(n/2)-m+(1]/2)'

which is therefore valid everywhere. By applying the proof of the Phragmen-

i (n/2)*m-(11/2)eisz

Lindelof theorem to the function (Z*E) HC(Z) on the

quadrant Re z 2 0, Im z 2 0 we see that

-((n-3)/2)-m
r

-(n/2)-m+(11/2) RellIm 2|
4 N '

(3.19) lHl(Z)I <c (k4

where 4 is independent of m. This argument works in the other three quad-

rants. This shows that this sequence {Ht)l is bounded in &'(R}). Moreover,

we can show its limit is f and one can estimate the error by the previous




procedure.

If Jz] < Py formula (3.10) ylelds (see (3.14)):

~((n-3)72)-m 1z~ (M72)-me(1172) Ryllm 2|

(3.20)  IHf(2)-f(2)] < c, py 121

2__ -((n-3)72)- m“ 0

—(n/2)-m0(13/2)eR.|lm z|
[]

if |zl € 2. For |zl 2 &2 we have from (3.19) and the estimates for f

that
(3.21) IHt(z}-f(z)l < lH‘(z)I* if(z)}
. ;é ~((n=3)/2)-m,  ~(n/2)-m+(13/2) Rullm 2|
c; is independent of m and bigger than 2C2. hence the last estimate is

valid everywhere as stated in (3.5).

We can describe ﬁc and ﬁl explicitly using the Residue Theorem. Let

us do it for the case the sequence (ck) has been chosen with the additional

(r.z)

requirement that the pairs j_ . J and  J(po)em-1

(BkZ) {(j = 1,2) have
no common zeros. We note that if there were a common zero the multiplicity of
this zero for the product of the two functions would be exactly two and the
formula below can be modified easily. From the definition of Hl we can

write for example when n is odd

+3

_ _n+3, . n+3 . .
Ht(Z) = 2 Jn/z(rlz)dn/g(rzz)gB't(z)* z Jn/2(r12)J(n/2)+m—1(Bk2)82,8(2)

n+3

+2 (f3kz)g1 t(z)*-e(z)P(z).

Ins2(T22)(n/2) em-1
where

(r z)

g, ,(z) = :E: fla) n/2
1,8 - n+3 - 7 J r a)(z =3
|a|<pz « Jn/2(r2u)~](n/2)+m 1(3 a) n/2

J /2(r a)=0
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and analogous formulas for g . and & ¢ P 1s the polynomial of degree

S n+2 (in fact, P must be an even function) given by

n+2 n+l n+2
P(z) = Res [f‘((Z) z +czm3*...*( ]
=0 g Tel(Q)

We define

- _ _n+3 . n+3
r(2) = 20 7)) olrgzley () + 20 "3 oy 0 1 (B 28, l2)

n+3

vol2) = 2773 oy ano1 (B8 2V H P25 oy (M20 S ny iy (B2

Hence

(3.22) Ht(Z) = uc(z)Jn/z(rlz)'+vc(z)jn/2(r22),

and the estimates (3.6) and (3.7) follow from the asyrptotic estimates of the
Bessel functions. Even though we need to replace n+3 by n+4 in case

n is even, the estimates remain the same by the remark made after (3.13). o]

The previous proposition leads to the following

Theorem 9. let r_,r

1

5 > 0, r1/r2 f Zn' rl-*rz < R, (ck} a strictly

k21

incréasing sequence of positive numbers with limit -1, R =

ri+ro ’ k
> = R >
(r1+r2)(1+£k) (k 2 1), Ry =0. Forany r >0, re [Rk-l'Rk[' and S a
normalized spherical harmonic of degree m there are two sequences of
distributions ut’sl of order < n+3 with compact support in B(O,R-r_)

1
{respectively B(O.R»rg)) such that for ¢ 2 cm2 and any function f in

c”(B(0,R))
(3.23) IJ f(rw)S(w)do(w)-<ut,18(0'r ).f>._<8£’18(0,r ).f>|
Sn—l 1 2
[+ 4
< % (F(-r“)_Nr‘-(n_a)/2 max lg—;f(x)l.
: lal<N 8x

leSR&




where N = (%(nus)) +1, R"( = gno:%ﬁk and ¥ > 0 1is a constant depending

on r,.rz.R,n.ci.

Proof. let m2 1 and let H be the harmonic polynomial homogeneous of

degree m such that H{pw) = pmS(w). w e Sn-l. p > 0. From (3.4) we have

2-n-m
r

J f{rw)S(w)do(w) = <T(Ix]), H[ ]f(x)>
n-1

S _l(m—l)!Q

-1

where T(|x}) = (r2—lx|2)m X5(0 r)(x). We have seen that the Fourier-Bessel

r2-n—m
transform of — T(Ix|) is given by
27 "(m~1)'Q
n
(n 2)/2_..n, m,
tr—2 r; )r J(n/2)+m- 1(rt).

We can apply Proposition 8 and find explicit radial distributions Hp Ve with

SUpp M, < B(O,Rk-rl), supp v, < B(O,Rk—rz) such that the radial distribution

T, whose Fourier Bessel transform is given by

~ _ ,(n-2)/72_ n, m
12(2) =2 r(z)r [ J(n/2)+m- 1(rz) J /z(r 2)“8(2) J( /2)(r z)v (z)]
satisfies
I%Z(Z)l < % r-(n-B)/Zﬁzn-(n/Z)-m+(13/2)eRk|Im z| (¢ > const. mz)'

If we define the distributions

D™ s
“t()() = -F'Q—H[a—x‘]ul(l)d)
1"n
_-0™" (o
8l(X) = o H[a ]ul(lxl)
2n

then




- . 8
I n—If(rw)S(w)da(u) <“l'xB(0.rl)'f> <Sl'18(0,r2)'f> <t‘_H[5;]f>,
)

We will now estimate (Tt.H[g;]f> using Plancherel's formula. Let ¥

be a smooth radial function which is ldentically one on the ball B(O,%Rngk),

with support in ﬁ(O,%R#%Rk). One can find them in such a way that

a
max |§—; P )1 £ 7 (RR) 9< 4 (R-r) 9
x, lal=q dx q a

The constants wq are independent of R and k. Then
ter, 1)1 = rer, m[S) o 051 < | FuEn e e, £ (8) 1dg
o |8x U 18x) "k - n ¢ k
R

gr"“‘3’/2[ npu‘“/z’*“"z’J 1S(0) 11(g, £) (pw) Ido(w)dp

A

A

, 172" A
< (n-3)72 J 1S(w) 12do(w) J jpy (e 2) (g ) (pw) ldp.
n-1 n-1

S 0 weS

On the other hand

a

l(¢kf)“(§)| < 7&HEM-N(R—F)-N max  12—f(x)1.

Ix]1<R’ &x

lac] <N¥
n+13
2

This concludes the proof of Theorem 8 for m 2 0. For m = 0 everything -

2 1
2 = 2 —
where N 2 and 3R+3Rk.

works the same way, except that T 1is now the normalized measure of the
sphere of radius r, with Fourier-Bessel transform equal to J(n-2)/2(rt) up

to a constant. D

The estimate (3.23) leaves us with a little problem for small values of




r. Inthe case O S r < R-(rl0r2). we can use an explicit formula to

approximate & 1in the form

% ® Xg(0.r,)"%1

+x sa,_,
1 B(O.Tz) 2

aJ radial distributions of fixed order, supp @, < E(O,rz). supp a, <

B(O.rl). Hence we compute directly

fix) = [“1'18(o.r1)'f]* [aZ'ZB(O.rz)'r](X)

for |x]| < R-—(r1+r2), the precise estimate of the error being of the form

as in (3.21) (without the dependence on r and R-r): we use as a function

8 Jjust the product j , (r.z)j ,b(r_z).
n/2 1 n/2 2

If we choose the sequence €, in Theorem 9 so that every zero of 6(z) =

Jn/Z(rIZ)Jn/z(rZZ)J(n/2)+m—1(Bk2) is simple, the distributions gV and a

fortiori ue and 32 can be made completely explicit. We only need to know

the explicit form of a radial distribution whose Fourier-Bessel transform has

the form

J(n/2)+m—1(p2)

5 , (m21)

2
rARd

when a is a zero of J(n/2)+m—l(p2)'

These distributions have been computed in section 2; recall for example

J L, (pt)
that when n =2, p (¢) = (n/e)tm] ., with
m, o, p 2 2
t -a
1
_ 1 2_2.-1/2 _2.m-(1/2) _
"m.a,p(r) =3 I[O.p](r) (t7~r") J (1-€7) cosa(t-p€)d€[dT.
2m
r T/p

The sequence of approximations for the Fourier coefficients

R [ can be written as

2n
1 ie, *im6
EEIO f{re e dé, m=21, r e [Rk-l' K




ef> ¢+ <3

<y . X v X -f>] .
[ r.m B(o.rl) r.ml B(O.rz) teN

where
gy m ym
"r ml : 1)2? [{,}iiij Ky
t an1 y
m m m
SRR L IO
r.m¢ 2 X y 4
anr
2
and
" = _A3[IB(0,r2). :E: Jm(ra) u
£ 2 5 ., m, o, s
nr., 0<“<p¢ « Bkjl(rza)Jl(r2a)Jm(Bk°) k
jm(Bka)=0
2 2.m-1
) ) (Bk-l 17) . .
2" Vm-1)1m 3im B(O.B,)

Z Jm(ra) .
S 1.a,r2

« rzjl(rla)jm(BkQ)Ji(rza)

0<a<pt
jl(rza)=0
of (82-1-15)™!
v, = =-A X .
£ 1" Tin-1)1n Bim B(0,B,)
2: jm(ra) ) ]
5 . . ., l,a, 1r
0<a<p( « rlJl(rza)Jm(Bka)Jl(rla) lJ
jl(r]a)=0
2 2.,m-1
“B(o,ry , ET)

X )
2m B(O.Bk)

2
#[Sk-TKA+UkA][ >
L4

2nr‘1 2m_1n(m—1)!B

The polynomial Skd-Tkzz*-Ukz4 is defined as
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5., 4 s
Skfrkz*Ukzz = Res [Jm(rC) 3 z %82 4. .28 .
¢=0 C Jl("lC)J,("Z()Jn(Bk()

4. local inversion of the Pompeiu transform for the case of a square.

In this section we will show how to reconstruct a function f deflned In
the disk B = B(G,R) of R2 in terms of its averages over squares ol side
2a, with 2v2a < R. We will also see that this inversion procedure general-
izes to practically any set E with the Pompeiu property.

The idea is to reduce ourselves to the situation of the previous scction.
Let Q be the square [-a,al<[-a,al, 10 its characteristic function. Then

2

ax
(4.1) T= 5ay = %.a) %-a.a) " %(-a,-a) “%a,-a)

o

It is immediate that ?OT = 0. On the other hand, this is not true for some

derivatives of T. We compute directly the Fourier-Bessel transform of
k
?O[S—ET]. Let t be a positive number, choose ( € C2, 1IZl = t, and iden-

2z

tify z = x+1iy with (x,y) € RZ, then

k ~ k .

a*
62k
k
=8 T, (1)

k ’

dz 1zl

= < T(z),?o(e-iz'<)>

k

= <Q—412),J(tlzn>
k 0
dz

k
= -0)%ar2), 80 1z
kO
3z




1
-

k
(as shown in Lemma 6) = t2k<“f(z), [;] Jk(tlzl)>.
That 1is,
& 1 ) if k ®2 (mod 4)

(4.2) PR ——-T] (t) = k .

05.% 4[%] t2Ke ’("/A)RJk(Vﬁta) if k=2 (mod 4).
In particular,

3° 1\ 2 4

(4.3) ERO[EQET]] (t) = -1a"t JZ(VEat)

6 - ia8 12
BT]] (t) = —t JS(V§at).

4
(4.4) PRO[;——
z

The two functions above have only the origin as a common zero of order

—

4, by a well known property of the Bessel functions (see (19, p. 485]). On

the other hand, the function (?01Q)~(0) # 0. If we use these threce functions

with a reasoning similar to that in the last section we would need R > 3v2a

to obtain an inversion formula which will be even a bit more complicated. (We

will return to this point -below.) We sidestep this question by working only
6

2
with the radial distributions ?O[E—ET] and ROEZ—ET] to first reconstruct
z z

Azf. Namely, consider the two radial distributions HiHs such that
p,(t) = -iazj (V2at)
1 2
~ ia6 B

whose Fourier Bessel transforms have no common zeros and which are supported

in B(0,v2a). One can modify Lemma 7 by considering the function
e(t) = ul(t)pz(t)Jm(c2¢§t).

with 0 < ¢ < R-2va. The inequality (2.22) is replaced by

4.32




(4.5) lo(z)] 2 |z~ (172)(3+2m) 2va(1sc) 1n 2|

Whenever |z| = p; or IImz|l 21, t2 L;. for some ﬂ;.L; > 0.

The proof of Theorem 8 furnishes distributions u;,s; such that for any

function f € C”(B(O,R))

n
1 16, ~im@ , Cens
Ii? J fire e do <U‘.pl-f> (5l,p2uf>|

-n

, N {al
< ¥ (R-r) max |———f(2)1,
[ a a
falsN 8x lay 2

< ’
lzI_Rk

where, as before, the distributions U;.B} depend also on r,m, have support
in B(R-v2a), their order and the constant N do not depend on r or m:
Ri has the same meaning as in Theorem 9, that is Ri = §R4-; 72a(1+E ).

Applying (4.6) to Azf. we can compute its Fourier coefficlents in
2

6
B(O,R) in terms of the functions $ = [.‘Ro[z-—z'l‘]]-f‘ and ¥, = [RO[%T]]-T
z z

' 2 62 2l a
in B(R-v2a), since A“p, = R |=—5T| and Ay, = R |=—T|. By Lemma S, we
1 0 22 2 0 326

can compute the functions $ 95 in terms of the Pompeiu transform of f. In
other words, we can ¢ xplicitly recover the Fourier coefficients of Azf in

terms of P(f)}.

We need now to show how to compute the Fourier cocfficients of f in
terms of P(f) and Azf. This can be accomplished by observing that

~ _ _ 2
(ROXQ) (0) = areal(Q) = 4a

and that (ROIQ)~(Z) has an asymptotic behavior of the same type as thal of

the Bessel functions, as it was shown in [3, Section 6]. Hence we can apply

the same procedure as above to the two radial distributions Ron and A260




and in this way, we can approximate the Fourier coefficients of £ in B(0,R)

as closely as we want in terms of the “"data" P(f).

Remark 1. The procedure for the local inversion of the Pompeiu transform
assoclated to a square is valid for a very general class of domains having the
Pompeiu property. In fact, let E be a compact subsctl of R" having the
global Pompeiu property. Let us assume that for some base point Xy the
boundary of E contains a hyperbolic point p 1in the sense of [3,section
2). One can assume that aB(xo.r) nE = {p})., where r = dist(xo.p) and

ECS ﬁ(xo,r). This is just a minimal regularity condition on the extremal

point p of E. By Proposition 5 in [3], we have that near the real axis we

have the asymptotic development

(4.7) (R 207 (8) ~ 225 costtrou,),
XO E t'II() 1
where vy, v, are some positive constants related to the geometry of OJE near

p. Outside a horizontal strip there is a corresponding good lower bound.
This behavior is the same as that of the Bessel functions.
Let be R x.. If we assume that R > 3r, let €., > O be such
1 xo E 0
that 3r-+3£0 < R. For any » > O we can consider the set Ee which is the
. —
translate of E along the unit direction xop by €, then

const

tvo

(4.8) (RxoxEc)”(t) ~ cos(tlr+e)-v ),

since the only extremal point of Ec of interest is just p-*cxop. It is

then immediate that we can éhoose € £ ¢ so that ﬁl and (?x )~ have

0 X
0 Ec

’

only finitely many common zeros. let us choose € with such a property,

M, = Rx zEC.' and zl,...,zN the common zeros of Hy and Hay The argument

0 %

in [3,Proposition S] shows that one cannot only translate along the ray §83




but even along & small open cone X with vertex O in such a wvay that the
transliate of p remains the only extremal point in Et n aB(xo.Ip4t~xol) for

T€X By Llemma 4° the corresponding functions wt have no common zero if

T} < g,
It} 0

For each z we can choose distinct =« such that (R x ) (2 ) # 0,
J J XgE, 10
J

hence there is a linear combination of these finitely many functions which
will not vanish at any of the points zl,...,zN. This linear combination ﬁ3
will automatically have a good asymptotic development. The radlal distribu-
tions (with respect to xo) HyoMy. pq are supported by the balls é(xo,rl),
B(xo,rz), B(xo.ra) respectively, ry+r,+ry < R and the method of the

previous section applies with small modifications. Lemma 7 allows us to com-

pute uj-f in terms of P(f), in this way one obtains an inversion formula in

any ball of radius R > 3r.

Remark 2. In comparing the previous remark with the construction for the

square one notes that the construction for the square could be further simpli-

62

fied if we knew that (Ron)~ and ?Otg—é ]~ have no common zeros. Though
z

we believe this is true we huve not been able to prove it.
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CONCLUBIONS

We have demonstrated the feasibility of building
super-resolution systems using multiple detectors. The
deconvolution method provides a real time linear
implementation of the reconstruction problem which is robust
with respect to noise and perturbations of the overall
systen.

The next task that is starting to be carried out by
doctoral students of Dr. Berenstein's in Maryland, Drs. Gay
and Yger in Bordeaux, and Dr. Taylor in Michigan, is to
incorporate postprocessing features adequate for particular
tasks. For instance, in many problems we need not only to
reconstruct the pixel by pixel values of signal to a desired
degree of resolution but also we need to automatically
identify it, e.g. using segmentations, Voronov diagrams, etc.
How to incorporate this image (post) processing into the
deconvolutions is the challenge.

Another thing that still remains to be implemented,
since it requires considerable manpower, is to write a user
friendly menu to design and simulate multidetector systems.
It is for this task we feel the newer completely numerical
algorithm of finding deconvolvers might be most useful.

The local Pompeiu problem that "peeled-off" the
deconvolution problem presents new challenges. The nature of
the inversion formulas for Chapter 4, indicates that the

deconvolution and local deconvolution formulas must be well
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adapted to implementation in terms of wavelets. If this were
the case, it will also help to produce a significant data
reduction and reduction of processing time in ATR and similar
problems.

Finally, the purely algebraic problems of the size and
degree of solutions to the Bezout equation have applications
to robotics, control of distributed parameter systenms,
computational geometry, etc., and they show the unexpected
payoffs of the use of the powerful methods of several complex

variables in applied mathematics.




